

Civil Engineering and Architecture

Editorial Board

Editor-in-Chief

Prof. Jorge M. Tavares Ribeiro

School of Architecture, University of Lisbon, Portugal

Honorary Editor-in-Chief

Dr. Masa Noguchi

University of Melbourne, Australia

Deputy Editor-in-Chief

Prof. Salvatore Leonardi

Department of Civil Engineering and Architecture, University of Catania - Via Santa Sofia, 64 95125 – Catania, Italy

Dr. Michael Phiri

School of Architecture, The University of Sheffield, UK

Dr. Jackson Kong

Division of Building Science and Technology, College of Science and Engineering, City University of Hong Kong, China

Dr. Lar. Rohayah Che Amat

Department of Science, Management & Design, UTM Razak Faculty of Technology and Informatics, UTM Kuala Lumpur, Malaysia

Dr. Liyaning (Maggie) Tang

School of Architecture and Built Environment, University of Newcastle, Australia

Editorial Board

Prof. Aldo Renato Daniele Accardi

University of Palermo, Italy

Prof. Muhammad Saleem

College of Engineering, University of Dammam, Saudi Arabia

Prof. Aloke Kumar Datta

Department of Civil Engineering, National Institute of Technology, India

Prof. Behzad Sodagar

School of Architecture and Design, College of Arts, University of Lincoln, UK

Prof. Rosa Maria Vitrano

Department of Architecture, University of Palermo, Italy

Prof. Antonio Formisano

Department of Structures for Engineering and Architecture, School of Polytechnic and Basic Sciences, University of Naples "Federico II", Italy

Prof. SALVATORE ANTONIO BIANCARDO

Department of Civil, Architectural and Environmental Engineering (DICEA), School of Polytechnic and Basic Sciences, University of Naples Federico II, Italy

Prof. Maurizio Nicarella

Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Italy

Prof. Giuseppe Lacidogna

Department of Structural, Geotechnical and Building Engineering (DISEG), Polytechnic University of Turin, Turin, Italy

Prof. Stefano Dal Pont

Laboratory 3SR, Université Grenoble Alpes (UGA), France

Prof. Mario Grosso

Independent Researcher, Italy

Prof. H. Murat Celik

Department of City and Regional Planning, Istanbul Technical University, Turkey

Prof. Luigi Alini

Department of Civil Engineering and Architecture, University of Catania, Italy

Prof. Hakim S. Abdelgader

Department of Civil Engineering, Faculty of Engineering, University of Tripoli, Libya

Prof. Jacob Oludoye Oluwoye

Department of Community and Regional Planning, Alabama A&M University, USA

Prof. Ahmed Senouci

Department of Construction Management, University of Houston, USA

Prof. Khuplianlam Tungnung

Interac Kansai & South Central Co., Ltd., Japan

Prof. Rosario Montuori

Department of Civil Engineering (DICIV), University of Salerno, Italy

Dr. Santina Di Salvo

Department of Architecture, University of Palermo, Italy

Dr. Hongyuan Liu

School of Engineering, University of Tasmania, Australia

Dr. Amira Elnokaly

School of Architecture, University of Lincoln, UK

Dr. Damian Beben

Department of Geodesy and Geotechnics, Faculty of Civil Engineering, Opole University of Technology, Poland

Dr. Ying Wang

Deakin University, Australia

Dr. Daniela Jurasova

Department of Civil Engineering and Urban Planning, University of Zilina, Slovakia

Dr. Petros Christou

Department of Civil Engineering, Frederick University, Cyprus

Dr. Lee Pugalis

Northumbria University, UK

Dr. Maurizio Francesco Errigo

Faculty of Engineering and Architecture, Kore University of Enna, Italy

Dr. Luisa Maria Calabrese

Delft University of Technology, Netherlands

Dr. Alessandro De Masi

University of Trento, Italy

Dr. Mohammad Sharif Zami

Department of Architecture, College of Environmental Design (CED), King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia

Dr. Eglė Navickienė

Faculty of Architecture, Vilnius Gediminas Technical University, Lithuania

Dr. Natalija Lepkova

Department of Construction Economics and Property Management, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Lithuania

Dr. Cristiana Cellucci

Department of Architecture, "G.D'Annunzio" University, Pescara, Italy

Dr. Natalia Distefano

Department of Civil Engineering and Architecture, University of Catania - Via Santa Sofia, 64 95125 – Catania, Italy

Dr. Pappalardo Giuseppina

Department of Civil Engineering & Architecture, University of Catania, Italy

Dr. Paolo Castaldo

Department of Structural, Building and Geotechnical Engineering, Polytechnic University of Turin, Italy

Dr. Alessio Cascardi
Institute for Construction Technologies, Italy

Dr. Mário Rui Tiago Arruda
Higher Technical Institute, Universidade de Lisboa, Portugal

Dr. Maria G. Augeri
Department of Enterprise Engineering, Tor Vergata University of Rome, Italy

Assoc. Prof. Antonio Brencich
Department of Civil, Environmental and Architectural Engineering, University of Genoa, Italy

Assoc. Prof. Silvia Brunoro
Department of Architecture, University of Ferrara, Italy

Assoc. Prof. Vittorio Nicolosi
Department of Enterprise Engineering “Mario Lucertini”, University of Rome “Tor Vergata”, Italy

Prof. Ing. Juraj Králik
Department of Structural Mechanics, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia

Assoc. Prof. Baris Sevim
Department of Civil Engineering, Yildiz Technical University, Turkey

Reviewers

Dr. Mariateresa Lombardo
School of Civil and Building Engineering, Loughborough University, UK

Prof. Mahmoud Haggag
Department of Architectural Engineering, College of Engineering, UAE University, UAE

Prof. Garth Rockcastle
Department of Architecture, School of Architecture, Planning & Preservation, University of Maryland, USA

Dr. Essam Zaneldin
Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, UAE

Prof. Elizabeth Laycock
Department of the Built Environment, Sheffield Hallam University, UK

Dr. Chantelle Niblock
Queen's University Belfast, UK

Dr. Abdulkadir Ganah

Gb School of Architecture, Construction and Environment, University of Central Lancashire, Preston, UK

Dr. Burcu Gülay Taşçı

Department of Architecture, Dokuz Eylul University Tinaztepe Campus, Turkey

Dr. Indré Gražulevičiūtė-Vileniškė

Department of Architecture and Urbanism, Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Lithuania

Prof. Juan Monjo-Carrió

Department of Building and Architectural Technology, Superior Technical School of Architecture of Madrid, Technical University of Madrid, Spain

Dr. Roger Señís

Department of Architectural Constructions II, Barcelona School of Building (EPSEB), Polytechnic University of Catalonia (UPC-BarcelonaTech), Spain

Prof. Kemal Hacıefendioglu

Department of Civil Engineering, Faculty of Engineering, Ondokuz Mayıs University, Turkey

Dr. Emel Turker

Geotechnical Discipline, Department of Civil Engineering, Faculty of Engineering, Karadeniz Technical University, Turkey

Dr. Evrim Cure

Department of Civil Engineering, Faculty of Engineering, Karadeniz Technical University, Turkey

Dr. Mauro Sassu

Department of Structural Engineering, University of Pisa, Italy

Dr. Khaled Galal Ahmed

Department of Architectural Engineering, College of Engineering, UAE University, UAE

Dr. Katerina Tsikaloudaki

Laboratory of Building Construction and Building Physics, Department of Civil Engineering, Aristotle University of Thessaloniki, Greece

Prof. Georgia Butina Watson

Department of Planning, Faculty of Technology, Design and Environment, Oxford Brookes University, Headington Campus, UK

Dr. Jiri Hirs

Faculty of Civil Engineering, Brno University of Technology, The Czech Republic

Dr. Neslihan Karataş

Faculty of Architecture, Dokuz Eylul University, Turkey

Dr. Marek Rudnicki

Division of Theoretical Mechanics and Pavement Modeling, Institute of Roads and Bridges,
Faculty of Civil Engineering, Warsaw University of Technology, Poland

Dr. Josep Lluís Ginovart

Department of Architecture, Rovira i Virgili University, Spain

Prof. John Shortreed

Department of Civil and Environmental Engineering, Faculty of Engineering, University of
Waterloo, Canada

Prof. Stefano F. Musso

Department DSA of Sciences for the Architecture, University of Genoa, Italy

Prof. Ainars Paeglis

Department of Roads and Bridges, Institute of Transport Infrastructure Engineering, Riga
Technical University, Latvia

Dr. De Marchis Mauro

Faculty of Engineering and Architecture, Kore University of Enna, Italy

Dr. Jacky K.H. Chung

Department of Building, School of Design and Environment, National University of
Singapore, Singapore

Dr. Abu Faruk

Materials and Pavements Division, Texas A&M Transportation Institute, USA

Dr. Gail P Borden

Hines College of Architecture and Design, University of Houston, USA

Dr. Abdulaziz Banawi

Department of Architectural Engineering, College of Engineering, United Arab Emirates
University, UAE

Dr. Amit Wolf

Southern California Institute of Architecture, USA

Dr. Ebru Çubukçu

Department of City and Regional Planning, Faculty of Architecture, Dokuz Eylul
University, Turkey

Dr. Boris Trogrlic

Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Croatia

Dr. Ana Pereira Roders

Department of Architecture, Building and Planning, Eindhoven University of Technology,
Netherlands

Dr. Konstantinos Lakakis

Laboratory of Geodesy and Geomatics, Department of Civil Engineering, Aristotle University of Thessaloniki, Greece

Dr. Aušra Mlinkauskienė

Department of Architecture and Urbanism, Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Lithuania

Dr. Roberto Passalacqua

Department of Civil Engineering, Chemical and Environmental (DICCA), University of Genoa, Italy

Prof. Bronne Dytoc

Southern Polytechnic State University, USA

Dr. Martina Baučić

Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Croatia

Dr. Gursewak S Aulakh

Department of Architecture, Plymouth University, UK

Dr. Wenyen Wu

School of Civil, Environmental & Mining Engineering, University of Adelaide, Australia

Prof. Meng-Hao Tsai

Department of Civil Engineering, National Pingtung University of Science & Technology, Taiwan, China

Dr. Borliang Chen

Department of Civil and Disaster Prevention Engineering, National United University, Taiwan, China

Dr. David Thorpe

School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Australia

Dr. Amy W Guo

School of Civil Engineering and Geosciences, Newcastle University, UK

Dr. Henrik P. Minassians

Faculty of Planning, California State University Northridge, USA

Dr. Alireza Rezaei

Department of Civil Engineering, Eastern Mediterranean University, Turkey

Dr. Cristina Candito

Department for Science for Architecture, Polytechnic School of Engineering and Architecture, University of Genoa, Italy

Dr. Cung Huy Nguyen

Department of Civil Engineering, Faculty of Engineering, University of Bristol, UK

Prof. Alen Harapin

Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Croatia

Dr. Dieter F. Stolle

Faculty of Engineering, McMaster University, UK

Dr. Tomasz Trapko

Department of Concrete Structures, Institute of Civil Engineering, Wroclaw University of Technology, Poland

Dr. João Viegas

Department of Buildings, National Laboratory of Civil Engineering, Portugal

Dr. Binxia Xue

School of Architecture, Harbin Institute of Technology, China

Dr. Torill Meistad

Department of Architectural Design and Management, Norwegian University of Science and Technology, Norway

Prof. Christo Vosloo

Department of Architecture, Faculty of Art, Design and Architecture, University of Johannesburg, South Africa

Dr. Akmal Abdelfatah

College of Engineering, American University of Sharjah, UAE

Dr. Ignacio Oteiza

Spanish Council for Scientific Research, Eduardo Torroja Institute for Construction Science, Spain

Dr. Neno Toric

Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Croatia

Dr. Junli Yang

Department of Property & Construction, Faculty of Architecture and the Built Environment, University of Westminster, UK

Dr. Sebnem Gokcen

Department of City and Regional Planning, Faculty of Architecture, Dokuz Eylul University, Turkey

Dr. Salah Eldin Mahmoud Osman

Faculty of Architecture, University of Khartoum, Sudan

Dr. Barbara Lino

Department of Architecture, University of Palermo, Italy

Dr. Jasper Vrugt

Department of Civil and Environmental Engineering, The Henry Samueli School of Engineering, University of California, USA

Dr. Esther Obonyo

Rinker School of Construction Management, University of Florida, USA

Dr. Oliver Schürer

Department of Architecture Theory, Institute of Architecture Sciences, Vienna University of Technology, Austria

Dr. Guðni A. Jóhannesson

Division of Building Technology, KTH - The Royal Institute of Technology, Sweden

Dr. Begum Sertyesilistik

Department of Architecture, Istanbul Technical University, Taskısla Campus, Turkey

Dr. Björn Marteinsson

School of Engineering and Natural Sciences, Faculty of Civil and Environmental Engineering, University of Iceland, Iceland

Dr. Victoria Chanse

School of Architecture, College of Agriculture and Natural Resources, University of Maryland, USA

Dr. Marisela Mendoza

School of Architecture Design and the Built Environment, Nottingham Trent University, UK

Dr. F. Karantoni

Department of Civil Engineering, University of Patras, Greece

Prof. Walter Salvatore

Department of Structural Engineering, The University of Pisa, Italy

Dr. Hulya Yuceer

Department of Architecture, Adana Science and Technology University, Turkey

Dr. Rasa Apanaviciene

Department of Civil Engineering Technologies, Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Lithuania

Dr. Mike Riley

School of the Built Environment, Liverpool John Moores University, UK

Dr. Maria Idália Gomes

Department of Civil Engineering, Lisbon Engineering Superior Institute (ISEL), Lisbon Polytechnic Institute (IPL), Portugal

Dr. Ján Ližbetin

Department of Transport and Logistics, The Institute of Technology and Business in České Budějovice, The Czech Republic

Dr. Qing Lu

Department of Civil and Environmental Engineering, University of South Florida, USA

Dr. Rossella Corrao

Department of Architecture, Polytechnic School, University of Palermo, Italy

Dr. Saeed Mirza

Department of Civil Engineering and Applied Mechanics, McGill University, Canada

Prof. Maurizio Carta

Department of Architecture, University of Palermo, Italy

Dr. Evangelia Lambrou

School of Rural and Surveying Engineering, Laboratory of General Geodesy, National Technical University of Athens, Greece

Dr. Robert W. Peters

Department of Civil, Construction, and Environmental Engineering, University of Alabama at Birmingham, UK

Dr. Ana Souto

School of Architecture, Design and the Built Environment, Nottingham Trent University, UK

Dr. Aysem Berrin Zeytun Cakmakli

Department of Architecture, Middle East Technical University, Turkey

Dr. Alessandro Lo Faro

Department of Civil Engineering and Architecture (DICAR), University of Catania, Italy

Dr. Alireza Fadai

Department of Structural Design and Timber Engineering, Vienna University of Technology, Austria

Prof. Eun Ik Yang

Department of Civil Engineering, Gangneung-Wonju National University, South Korea

Dr. Zbigniew Kacprzyk

Faculty of Civil Engineering, Warsaw University of Technology, Poland

Dr. Maria Lazaridou

Lab of Photogrammetry-Remote Sensing, Faculty of Civil Engineering, Aristotle University of Thessaloniki, Greece

Dr. Valentin Jan

Department of Road Structures, Faculty of Civil Engineering, Czech Technical University, The Czech Republic

Dr. Ikrima Amaireh

Department of Architecture & Built Environment, Faculty of Engineering, University of Nottingham, UK

Dr. Myunghoon Ko

Center for Transportation Safety, Texas A&M Transportation Institute, USA

Dr. Nawari Nawari

School of Architecture, University of Florida, USA

Dr. Laura Inzerillo

Department of Architecture, University of Palermo, Italy

Dr. Didem Altun

Department of Architecture, Faculty of Architecture, Dokuz Eylul University, Turkey

Dr. Serhat Demir

Department of Civil Engineering, Karadeniz Technical University, Turkey

Dr. Ruta Miniotaitė

Department of Civil Engineering and Architecture, Kaunas University of Technology, Lithuania

Dr. Liu, Kai-wei

Texas A&M Transportation Institute, USA

Dr. Yong Un Ban

Department of Urban Engineering, School of Engineering, Chungbuk National University, South Korea

Prof. E. Eti Akyüz Levi

Faculty of Architecture, Dokuz Eylul University, Turkey

Dr. Dorothy Chan

Department of Civil and Structural Engineering, Hong Kong Polytechnic University, China

Dr. Naciye Doratlı

Faculty of Architecture, Eastern Mediterranean University, Cyprus

Dr. Paolo Perulli

Ramon Llull University, Spain

Dr. Feifei Tong

School of Civil, Environmental and Mining Engineering, University of Western Australia, Australia

Dr. Jana Ižvoltová

Faculty of Civil Engineering, University of Zilina, Slovakia

Dr. Pedro Garcia
Ramon Llull University, Spain

Dr. Krzysztof Gradkowski
Civil Engineering Department, Warsaw University of Technology, Poland

Dr. Kathryn L. Bedette
Department of Architecture, Kennesaw State University, USA

Prof. Rita Santos Senise
Division of Infrastructure and Environment, KTH Royal Institute of Technology, Sweden

Dr. Viktor Myronenko
Faculty of Architecture, University of Life Sciences in Lublin, Poland

Prof. Pavao Marovic
Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Croatia

Dr. Fiona Borthwick
School of the Built Environment, Liverpool John Moores University, UK

Dr. Munjed A. Maraqa
Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, UAE

Dr. Ilkay Dinc-Uyaroglu
Department of Architecture, Faculty of Architecture, Middle East Technical University (METU), Turkey

Dr. Tea Duplancic Leder
Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Croatia

Prof. Gabriella Caroti
Department of Civil and Industrial Engineering, University of Pisa, Italy

Prof. Maria Rubert de Ventós
Department of Urban and Regional Planning, Polytechnic University of Catalonia, Spain

Dr. Joan Curós Vilá
Department of Architectural Design, Polytechnic University of Catalonia, Spain

Dr. Brenda Galvez
Department of Architecture & Design Architecture, New York Institute of Technology, USA

Dr. Nazife Özay
Department of Architecture, Eastern Mediterranean University, Turkey

Prof. Eneko J. Uranga
Department of Architecture, University of the Basque Country - UPV/EHU., Spain

Dr. Zuzana Pešková

Faculty of Civil Engineering, Czech Technical University in Prague, The Czech Republic

Dr. Jerzy Zbigniew Piotrowski

Department of Building Physics and Renewable Energy, Kielce University of Technology, Poland

Prof. Marta Llorente Diaz

Department of History and Theory of Architecture, Polytechnic University of Catalonia, Spain

Dr. Gabriele Neri

Institute of History and Theory of Art and Architecture (ISA), Academy of Architecture, Switzerland

Dr. Esteban Beita

School of Architecture and Design, New York Institute of Technology, USA

Dr. Yongliang Jin

Department of Civil & Environmental Engineering, Michigan Technological University, USA

Dr. Johannes Horvath

Vienna University of Technology, Austria

Dr. Gaspare Ventimiglia Massimo

Department of Architecture, Polytechnic School, University of Palermo, Italy

Dr. Alex Webb

School of Architecture and Planning, University of New Mexico, USA

Dr. Anna Barańska

Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, Poland

Dr. Kelley Beaverford

Department of Interior Design, Faculty of Architecture, University of Manitoba, Canada

Dr. Theodore Sawruk

Department of Architecture, College of Engineering, Technology, and Architecture, University of Hartford, USA

Dr. Sameh M. T. El-Feki

Architecture & Urban Design Program, School of Engineering & Applied Sciences, Nile University, Egypt

Prof. Gamal Mohammed

Department of Environmental Design, Faculty of Design, Ontario College of Art and Design (OCAD) University, Canada

Dr. Ali Alsayigh

School of Civil and Building Engineering, Loughborough University, UK

Dr. Celestina Ornella Fazia

Department of Architecture and Territory, Mediterranea University, Italy

Dr. Gerardo Carpentieri

Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Italy

Dr. Hirut Grossberger

Carl Ritter von Ghega Institute for Integrated Mobility Research, Saint Pölten University of Applied Sciences, Austria

Dr. Aylin Aras

Department of Architecture, Faculty of Architecture and Design, Bursa Technical University, Bursa, Turkey

Assoc. Prof. Nihat Kabay

Department of Civil Engineering, Faculty of Civil Engineering, Yıldız Technical University, Turkey

Dr. Alberto Bologna

Sapienza University of Rome, Italy

Dr. Daniel C.

Department of Civil Engineering, Karunya Institute of Technology and Sciences, India

Dr. Heni Fitriani

Department of Civil Engineering, Faculty of Engineering, Sriwijaya University, Indonesia

Dr. Lucie Augustinková

Faculty of Civil Engineering, VŠB - Technical University of Ostrava, The Czech Republic

Dr. Ali Al-Balhawi

Department of Civil Engineering, College of Engineering, Mustansiriyah University, Iraq

Prof. Ana-Maria Dabija

School of Architecture, Ion Mincu University of Architecture and Urbanism, Romania

Dr. Norhafezah Kasmuri

Faculty of Civil Engineering, University Teknologi MARA, Malaysia

Prof. Maria de los Angeles Cuenca Rosillo

Faculty of Architecture and Arts, Universidad Técnica Particular de Loja (UTPL), Ecuador

Dr. Jamal Al-Qawasmi

Department of Architecture, King Fahd University for Petroleum & Minerals, Saudi Arabia

Dr. Alfredo Soeiro

Department of Civil Engineering, Faculty of Engineering, University of Porto, Portugal

Assoc. Prof. Abeer Alawad

Department of Interior Design and Furniture, College of Human Sciences and Design, King Abdulaziz University, Saudi Arabia

Prof. Jose Silveira Dias

Research Center in Architecture Urbanism and Design, Lisbon School of Architecture, University of Lisbon, Portugal

Prof. Naif Haddad

Faculty of Architecture and Design, American University of Madaba (AUM), Jordan

Assoc. Prof. A. Tolga İlter

Department of Architecture, Marmara University, Turkey

Dr. Dedimuni Charmaine Nadeesha Chandrasena

Department of Civil Engineering, Faculty of Engineering, Skills College of Technology, Sri Lanka

Prof. Malek Jedidi

Department of Civil Engineering, Higher Institute of Technological Studies of Sfax, Tunisia

Dr. Christakis Onisiphorou

Department of Civil Engineering, Frederick University, Cyprus

Prof. Darja Kubečková

Department of Construction, Faculty of Civil Engineering, Technical University of Ostrava, The Czech Republic

Assoc. Prof. Zubair Saing

Department of Civil Engineering, Universitas Muhammadiyah Maluku Utara, Indonesia

Dr. Zul-Atfi bin Ismail

School of Environmental Engineering, Universiti Malaysia Perlis (UniMAP), Malaysia

Dr. Silvia Raquel García Benítez

Department of Structures and Geotechnics, Faculty of Civil Engineering, National Autonomous University of Mexico, Mexico

Dr. Marluci Menezes

Department of Materials, National Laboratory of Civil Engineering, Portugal

Dr. Efthimios Bakogiannis

Department of Geography & Regional Planning, National Technical University Athens, Greece

Prof. Rinaudo Fulvio

Department of Cartography and Surveying Architecture and Design, Polytechnic University of Turin, Italy

Assoc. Prof. Ahmed Abd Elghany Morsi

Department of Architecture, Faculty of Fine Arts, Helwan University, Egypt

Dr. Jolaoso Babatunde Adekoyejo

Centre for Part-Time and Diploma Programmes, Moshhood Abioal Polytechnic, Nigeria

Prof. Ing. Martin Krejsa

Department of Structural Mechanics, Faculty of Civil Engineering, Technical University of Ostrava, The Czech Republic

Assoc. Prof. Cristina Caramelo Gomes

Faculty of Architecture and Arts, Lusíada University, Portugal

Dr. José António Silva de Carvalho Campos e Matos

Department of Civil Engineering, School of Engineering, University of Minho, Portugal

Dr. Sever Drago

Faculty of Civil, Transportation Engineering and Architecture, University of Maribor, Slovenia

Dr. Elif Güneş

Department of Interior Architecture and Environmental Design, Atilim University, Turkey

Dr. Solomon Oisasoje Ayo-Odifiri

Department of Urban and Regional Planning, School of Environmental Sciences, Federal University of Technology Owerri, Nigeria

Assoc. Prof. Özge Cordan

Department of Interior Architecture, Faculty of Architecture, Istanbul Technical University, Turkey

Prof. Rafael Herrera-Limones

Department of Architectural Constructions, University of Seville, Spain

Assoc. Prof. Agoha Basil Onyekozuru

Department of Architecture, Faculty of Environmental Sciences, Chukwuemeka Odumegwu Ojukwu University, Nigeria

Assoc. Prof. Semenyuk Olga

Department of Architecture, Faculty of Construction, L.N. Gumilyov Eurasian National University, Kazakhstan

Dr. Agboola Oluwagbemiga Paul

Department of Architecture, Faculty of Environmental Studies, Osun State College of Technology, Nigeria

Dr. Guido Cimadomo

Higher Technical School of Architecture, University of Malaga, Spain

Dr. Vesna Zalar Serjun

Slovenian National Building and Civil Engineering Institute (ZAG), Slovenia

Dr. Ing. Jan Červenka

Cervenka Consulting, Prague, The Czech Republic

Assoc. Prof. RaEd Kamal Musa QaQish

Department of Architecture & Interior Design, Canadian University Dubai (CUD), UAE

Dr. Chiara Ravagnan

Faculty of Architecture, Sapienza University of Rome, Italy

Dr. Kishor Shrestha

School of Design and Construction, College of Engineering and Architecture, Washington State University, USA

Dr. Teresa O. Santos

Department of Structures, National Laboratory for Civil Engineering, Portugal

Dr. Bengi Yurtsever

Department of Architecture, Faculty of Architecture, Mugla Sitki Kocman University, Turkey

Dr. Maria Macchiaroli

Department of Civil Engineering, University of Salerno, Italy

Dr. M. Z. Naser

Glenn Department of Civil Engineering, Clemson University, USA

Assoc. Prof. Serena Baiani

Department of Planning Design Technology of Architecture, Sapienza University of Rome, Italy

Assoc. Prof. Nimish Biloria

Faculty of Design Architecture and Building, University of Technology Sydney (UTS), Australia

Dr. Ri Na

Department of Civil and Environmental Engineering, University of Delaware, USA

Dr. Pasquale Cucco

Department of Civil Engineering, University of Salerno, Italy

Assoc. Prof. Jasmina Bunevska Talevska

Department for Traffic and Transport, Faculty of Technical Sciences, St. Clement of Ohrid University of Bitola, North Macedonia

Dr. Yaseen Ahmed Hamaamin

Department of Civil Engineering, University of Sulaimani, Iraq

Dr. Angela Colluci

Department of Architecture and Urban Studies, Polytechnic University of Milan, Italy

Dr. Yasmeen Gul

Department of Architecture and Design, Al Ghurair University, UAE

Dr. Jeehwan Lee

Department of Architecture, College of Architecture, Myongji University, South Korea

Dr. Cinzia Gavello

Department of Architecture and Design, Polytechnic University of Turin, Italy

Assoc. Prof. Luigi Coppola

Department of Engineering and Applied Sciences, University of Bergamo, Italy

Assoc. Prof. Daniel Leo Faoro

College of Architecture and Design, Lawrence Technological University, USA

Dr. S. Sreedhar Reddy

Department of Civil and Environmental Engineering, University of Nizwa, Oman

Assoc. Prof. Ufuk Serin

Department of Architecture, Middle East Technical University, Turkey

Prof. Prachand Man Pradhan

Department of Civil Engineering, School of Engineering, Kathmandu University, Nepal

Prof. Kabilia Faris Hmood

Department of Architecture, College of Engineering, Ashur University, Iraq

Dr. Graziella Bernardo

Department of European and Mediterranean Cultures, Basilicata University, Italy

Prof. İlker Bekir

Department of Civil Engineering, Eskişehir Osmangazi University, Turkey

Assoc. Prof. Constantin Anca

Faculty of Civil Engineering, Ovidius University of Constanta, Romania

Dr. Akram Subhe Hardan Suleiman

Department of Civil and Infrastructure Engineering, Al Zaytoonah University of Jordan, Jordan

Dr. E. M. Bello

Department of Regional, Urban Studies and Planning, Polytechnic University of Turin, Italy

Dr. Carlos Jimenez-Bescos

Department of Architecture and Built Environment, Faculty of Engineering, University of Nottingham, UK

Dr. Cristina Oprea

Faculty of Transport, Politehnica University of Bucharest, Romania

Dr. Joana Mourao

Technical Superior Institute of Lisbon University (IST), Portugal

Prof. Damir Krajnik

Department of Urbanism, Spatial Planning and Landscape Architecture, Faculty of Architecture, University of Zagreb, Croatia

Dr. Anamaria Eugenia Ilie

Department of Transport, Traffic and Logistics, Faculty of Transports, Politehnica University of Bucharest, Romania

Dr. Fernando Lima

Faculty of Architecture and Urbanism, Federal University of Juiz de Fora, Brazil

Assoc. Prof. Ilaria Delponte

Department of Civil, Chemical and Environmental Engineering, University of Genoa, Italy

Assoc. Prof. Mandar Khanal

Department of Civil Engineering, Boise State University, USA

Dr. Danijel Šugar

Faculty of Geodesy, University of Zagreb, Croatia

Dr. İsmail Hocaoğlu

Department of Civil Engineering, Afyon Kocatepe University, Turkey

Dr. Fernando José Forte Garrido Branco

Department of Civil Engineering, University of Coimbra, Portugal

Dr. Gasparini Katia

Department of Architecture, Design and Planning, University of Sassari, Italy

Dr. Luis Fernando Guerrero Baca

Department of Creative Synthesis, Division of Sciences and Arts for Design, Metropolitan Autonomous University, Mexico

Dr. Paulo Candeias

Department of Structures, National Laboratory for Civil Engineering, Portugal

Dr. Borja Iñaki Iraola Sáenz

Department of Construction, Facilities and Structures, School of Architecture, University of Navarra, Spain

Assoc. Prof. Federica Ottoni

Department of Engineering and Architecture, University of Parma, Italy

Dr. Dorcas Ayeni

Department of Architecture, Federal University of Technology, Nigeria

Dr. Adelino Gonçalves

Department of Architecture, University of Coimbra, Portugal

Dr. Hilma Tamiami Fachrudin

Department of Architecture, Faculty of Engineering, University of Sumatera Utara, Indonesia

Dr. Nor Haslina Binti Ja'afar

Department of Architecture & Built Environment, Faculty of Engineering and Built Environment, National University of Malaysia, Malaysia

Assoc. Prof. Macedon Moldovan

Department of Product Design, Mechatronics and Environment, Faculty of Product Design and Environment, Transilvania University of Brasov, Romania

Dr. Vlad Vigil Eftenie

Department of Synthesis of Architectural Design, Ion Mincu University of Architecture and Urbanism, Romania

Assoc. Prof. Nilay Özsavaş Uluçay

Department of Basic Education, Muğla Sıtkı Koçman University, Turkey

Assoc. Prof. Nedhal Ahmed Al-Tamimi

Department of Architectural Engineering, College of Engineering, Najran University, Saudi Arabia

Dr. Anja Pratschke

Institute of Architecture and Urbanism, University of São Paulo, Brazil

Dr. Anda-Ioana Sfintes

Department of Synthesis of Architectural Design, Ion Mincu University of Architecture and Urbanism, Romania

Dr. Molar Orozco María Eugenia

Department of Materials Innovation Research, Faculty of Architecture, Autonomous University of Coahuila, Mexico

Assoc. Prof. Baris Sayin

Department of Civil Engineering, Istanbul University-Cerrahpasa, Turkey

Dr. Ulrike Herbig

Faculty for Architecture and Planning, Vienna University of Technology, Austria

Assoc. Prof. Paulina Faria

Department of Civil Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Portugal

Dr. Chameera Udwattha

Department of Civil Engineering, University of Moratuwa, Sri Lanka

Dr. Eduarda Vieira

Center for Research in Science and Technology of the Arts, Catholic University of Portugal, Portugal

Assoc. Prof. Triantafyllos K Makarios

School of Civil Engineering, Aristotle University of Thessaloniki, Greece

Dr. Pablo Guerra García

Department of Modern and Contemporary History, Universidad Nacional de Educación a Distancia, Spain

Dr. Zelal Cinar

Department of Architecture, TOBB University of Economics and Technology, Turkey

Dr. Simon Paul Borg

Department of Environmental Design, Faculty for the Built Environment, University of Malta, Malta

Dr. Ana Paula Pinheiro

Research Center in Architecture, Urbanism and Design, University of Lisbon, Portugal

Assoc. Prof. Monika Sulovska

Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia

Assoc. Prof. Norhafizah Abdul Rahman

Department of Landscape Architecture, Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia

Dr. Esteban Prieto-Vicioso

Universidad Nacional Pedro Henríquez Ureña, Dominican Republic

Dr. Simpson Nyambane Osano

Department of Civil & Construction Engineering, University of Nairobi, Kenya

Assoc. Prof. Tanut Waroonkun

Faculty of Architecture, Chiang Mai University, Thailand

Prof. Riham Nady Faragallah

Department of Architectural Engineering, Faculty of Engineering, Pharos University in Alexandria, Egypt

Dr. Ebelechukwu Enwerekowe

Department of Architecture, Faculty of Environmental Sciences, University of Jos, Nigeria

Dr. Radosveta Kirova

National Institute for Heritage Protection, 'Lyuben Karavelov' University of Structural Engineering and Architecture, Bulgaria

Prof. Run Liu

School of Civil Engineering, Tianjin University, China

Dr. Domenico D'Uva

Department of Architecture and Urban Studies, Polytechnic University of Milan, Italy

Dr. A. Sekisov

Department of Technology, Organization, Construction Economics and Real Estate Management, Institute of Construction and Transport Infrastructure, Kuban State Technological University, Russia

Dr. Constantinos G. Vassiliades

Department of Architecture, University of Cyprus, Cyprus

Dr. Wael Ibrahim

Department of Civil Engineering, Faculty of Engineering, Helwan University, Egypt

Dr. Mohammed A. F. Itma

Department of Architectural Engineering, An-Najah National University, Palestine

Assoc. Prof. Deana Breški

Department of Transportation, Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Croatia

Dr. Roser Martinez Ramos E Iruela

Department of Architectural Construction, Higher Technical School of Architecture, Spain

Dr. Joao da Costa Pantoja

Department of Technology, Faculty of Architecture and Urbanism, University of Brasilia, Brazil

Dr. Oleksandr Nedbailo

Institute of Technical Thermophysics, National Academy of Sciences of Ukraine, Ukraine

Dr. Guangli Du

Department of the Built Environment, Aalborg University Copenhagen, Denmark

Prof. José Elias Laier

Engineering School of São Carlos, University of São Paulo, Brazil

Prof. Khaled Mansy

School of Architecture, College of Engineering, Architecture, and Technology, Oklahoma State University, USA

Dr. Gordon Gilja

Department of Hydroscience and Engineering, Faculty of Civil Engineering, University of Zagreb, Croatia

Dr. Umar Bin Kassim

Faculty of Engineering Technology, Universiti Malaysia Perlis, Malaysia

Prof. Lauren Etxepare

Department of Architecture, University of the Basque Country, Spain

Dr. Milagrosa Borrallo Jimenez

Department of Architectural Constructions, Higher Technical School of Architecture, University of Seville, Spain

Prof. Doris Catharine Cornelie Knatz Kowaltowski

Department of Architecture and Building, Faculty of Civil Engineering, University of Campinas, Brazil

Dr. Ahmed Mahmoud Abu Hani

Independent Researcher, Jordan

Dr. Rateb Shaban

Department of Graphic Design, Faculty of Architecture and Design, Al-Ahliyya Amman University, Jordan

Dr. Ilenia Spadaro

Department of Civil, Chemical and Environmental Engineering, University of Genoa, Italy

Assoc. Prof. Seonghoon (Steve) Kim

Department of Civil Engineering and Construction Management, Georgia Southern University, USA

Assoc. Prof. Houssamaldeen Bahgat Elnabawy

Department of Architecture, The High Institute of Engineering, El Shorouk Academy, Egypt

Dr. Manuel C. Teixeira

Research Center for Architecture, Urbanism and Design, Faculty of Architecture, Technical University of Lisbon, Portugal

Dr. Manuela Rebaudengo

Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, Italy

Prof. James Chakwizira

Department of Urban and Regional Planning, North West University, South Africa

Dr. Gidion Turuallo

Department of Civil Engineering, Tadulako University, Indonesia

Dr. Bassam Halabieh
BAH Enterprises Inc., Oakville, Canada

Dr. Ann Veronica Coats
School of Civil Engineering and Surveying, Faculty of Technology, University of Portsmouth, UK

Dr. Marco Locurcio
Department of Civil, Environmental, Land, Building Engineering and Chemistry,
Polytechnic University of Bari, Italy

Dr. Lana Kudumović
Faculty of Architecture and Design, Fatih Sultan Mehmet Vakif University, Turkey

Prof. Mohammad Al Amin Siddique
Department of Civil Engineering, Bangladesh University of Engineering and Technology,
Bangladesh

Dr. Hamdi
Ministry of Public Work and Housing, Indonesia

Dr. Elina Binti Mohd Husini
Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, Malaysia

Dr. João Nuno Pernão
Faculty of Architecture, University of Lisbon, Portugal

Assoc. Prof. Usama Konbr
Department of Architecture, Faculty of Engineering, Tanta University, Egypt

Dr. Ari Sandhyavitri
Department of Civil Engineering, Faculty of Engineering, University of Riau, Indonesia

Dr. Stergios Mavromatis
School of Civil Engineering, National Technical University of Athens, Greece

Prof. Daniela Ladiana
Department of Architecture, D'Annunzio University of Chieti–Pescara, Italy

Prof. Nehad Eweda
Department of Architecture, Faculty of Engineering, Cairo University, Egypt

Assoc. Prof. Mohamed Youssef
Department of Town Planning, Faculty of Urban and Regional Planning, Cairo University,
Egypt

Dr. Saeed Balubaid
Department of Civil Engineering, Faculty of Engineering and Petroleum, Hadhramout
University, Yemen

Assoc. Prof. Olha Harkava

Department of Building Structures, National University "Yuri Kondratyuk Poltava Polytechnic", Ukraine

Dr. Nicola Ruggieri

Soprintendenza Archeologia Belle Arti e Paesaggio, Ministry of Culture, Italy

Prof. Shahira Sayed Sharaf Eldin

Department of Architecture, Faculty of Engineering, Tanta University, Egypt

Prof. Firas Al Mahmoud

Department of Civil Engineering, Institutes of Technology, University of Lorraine, France

Dr. Irina Bulakh

Faculty of Architecture, Kyiv National University of Construction and Architecture, Ukraine

Dr. Mohammad Zakri Bin Tarmidi

Department of Geo-information, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, Malaysia

Prof. Josefina García-León

School of Architecture and Building Engineering, Polytechnic University of Cartagena, Spain

Dr. Hülya Coskun

Faculty of Architecture, Maltepe University, Turkey

Dr. Miranda Rashani

Faculty of Architecture, University of Prishtina, Kosovo

Dr. Rasha Ahmed Reyad Ahmed Ibrahem

Faculty of Engineering, Benha University, Egypt

Dr. Julius Faremi

Department of Building, Faculty of Environmental Sciences, University of Lagos, Nigeria

Dr. Mehmet Serkan Yatağan

Faculty of Architecture, Istanbul Technical University, Turkey

Assoc. Prof. Didem Erten Bilgic

Department of Interior Design, Faculty of Architecture and Design, Kocaeli University, Turkey

Assoc. Prof. Miguel José das Neves Pires Amado

Department of Civil Engineering, Architecture and Georesources, Instituto Superior Tecnico, Portugal

Dr. Reuben Omale

Department of Architecture, School of Environmental Technology, Federal University of Technology Akure, Nigeria

Dr. Marko Bartolac

Laboratory of Structural Testing, Faculty of Civil Engineering, University of Zagreb, Croatia

Dr. Asniza Hamimi Abdul Tharim

Faculty of Architecture, Planning and Surveying, Universiti Teknologi MARA, Malaysia

Dr. Antika Sawadsri

School of Architecture, Art, and Design, King Mongkut's Institute of Technology Ladkrabang, Thailand

Assoc. Prof. Paolo Sanjust

Department of Architecture and Civil and Environmental Engineering, University of Cagliari, Italy

Dr. Rasha Elborgy

Department of Architecture, Faculty of Engineering, Fatih Sultan Mehmet Vakif University, Turkey

Prof. Ahmed Mohamed Abd El-Rahman Shehata

Department of Islamic Architecture, College of Engineering & Islamic Architecture, Umm Al-Qura University, Saudi Arabia

Prof. Leksmono Suryo Putranto

Department of Civil Engineering, Tarumanagara University, Indonesia

Dr. Sandra Pereira

Department of Engineering, School of Science and Technologies, University of Trás-os-Montes and Alto Douro, Portugal

Prof. Akhyar

Mechanical Engineering, Universitas Syiah Kuala, Indonesia

Prof. Manuel Pinto

Department of Civil Engineering, School of Technology and Management of Viseu, Portugal

Prof. Bystrova Tatyana Yuryevna

Department of Cultural Studies and Design, Ural Federal University named after the first President of Russia B. N. Yeltzin, Russia

Dr. Shirin Izadpanah

Department of Interior Architecture and Environmental Design, Faculty of Fine Arts and Architecture, Antalya Bilim University, Turkey

Assoc. Prof. Maria Trojanova

Department of Technology and Construction Management, Faculty of Civil Engineering,
University of Zilina, Slovakia

Prof. Branislav S. Gavrilović

Department of Railway, College of Applied Studies, Academy of Technical and Art
Applied Studies Belgrade, Serbia

Assoc. Prof. Sharifah Fairuz Syed Fadzil

School of Housing, Building and Planning, University of Science, Malaysia

Prof. Ebru Erdönmez Dinçer

Faculty of Architecture, Istanbul University, Turkey

Assoc. Prof. Sara Todeschini

Department of Civil Engineering and Architecture, University of Pavia, Italy

Prof. Filiz Bal Koçyiğit

Department of Architecture, Faculty of Fine Arts, Design and Architecture, Atılım
University, Turkey

Dr. Serkan Kemeç

Department of City and Regional Planning, Van Yuzuncu Yıl University, Turkey

Dr. José Luís Miranda Dias

National Laboratory for Civil Engineering, Portugal

Assoc. Prof. Arta Basha-Jakupi

Faculty of Architecture, University of Prishtina, Kosovo

Dr. Ricardo Gomez Val

Department of Architectural Technology, Technical University of Catalonia, Spain

Dr. Cristina Sofia da Silva Teixeira Aleixo

Department of Architecture, University of Évora, Portugal

Dr. Chiara Bedon

Department of Engineering and Architecture, University of Trieste, Italy

Dr. Lukas Beladi Sihombing

Department of Civil Engineering, Faculty of Engineering, University of Indonesia,
Indonesia

Assoc. Prof. Netice Yildiz

Department of Architecture, Faculty of Architecture, Eastern Mediterranean University,
Cyprus

Dr. Kenichi Hashimoto

Nine Steps Corporation, Japan

Dr. Esteban Felipe Zalamea Leon

Faculty of Architecture and Urbanism, University of Cuenca, Ecuador

Prof. Fernando Moreira Da Silva

Lisbon School of Architecture, University of Lisbon, Portugal

Dr. Mohammed Alhaj Hussein

Independent Researcher, Saudi Arabia

Dr. Simon Mdondo Wandera

School of Civil & Geomatic Engineering, Jomo Kenyatta University of Agriculture and Technology, Kenya

Dr. Mohamed Faisal Al-Kazee

Department of Architecture and Interior Design, College of Engineering and Architecture, University of Nizwa, Oman

Prof. Oleksii Tiutkin

Department of Transport Infrastructure, Ukrainian State University of Science and Technologies, Ukraine

Assoc. Prof. Simona Talenti

Department of Civil Engineering, University of Salerno, Italy

Dr. Khairil Azman bin Masri

College of Engineering, Universiti Malaysia Pahang, Malaysia

Prof. Sudhira De Silva

Department of Civil and Environmental Engineering, Faculty of Engineering, University of Ruhuna, Sri Lanka

Dr. Hany Abdalla

Department of Structural Engineering, Faculty of Engineering, Cairo University, Egypt

Dr. Sithembiso Lindelihle Myeni

School of Built Environment & Development Studies, University of KwaZulu-Natal, South Africa

Dr. Jose Vercher

Department of Architectural Constructions, Polytechnic University of Valencia, Spain

Prof. Liudmyla Trykoz

Department of Building Materials, Construction and Structures, Ukrainian State University of Railway Transport, Ukraine

Prof. Manoel Rodrigues Alves

Institute of Architecture and Urbanism, University of São Paulo, Brazil

Dr. M. Rosário Oliveira

School of Engineering, Polytechnic Institute of Porto, Portugal

Dr. Guk-Gon Song
Korea Conformity Laboratories, South Korea

Assoc. Prof. Md Azree Othuman Mydin
School of Housing, Building and Planning, University of Science, Malaysia

Prof. Halyna Tatarchenko
Department of Construction, Urban and Spatial Planning, Volodymyr Dahl East Ukrainian National University, Ukraine

Assoc. Prof. Fotini Kehagia
Highway Laboratory, Department of Transport and Project Management, School of Civil Engineering, Aristotle University of Thessaloniki, Greece

Dr. Genco Berkin
Faculty of Architecture and Design, Fatih Sultan Mehmet Vakif University, Turkey

Dr. Uznir Ujang
Faculty of Built Environment and Surveying, University of Technology Malaysia, Malaysia

Dr. Onurcan Çakir
Department of Architecture, Faculty of Fine Arts and Design, İzmir University of Economics, Turkey

Assoc. Prof. Iftekharuddin Mohammed Choudhury
Department of Construction Science, Texas A&M University, USA

Dr. Nuno Alão
Faculty of Architecture, University of Lisbon, Portugal

Dr. Masoud Pourbaba
Department of Civil and Environmental Engineering, Cullen College of Engineering, University of Houston, USA

Dr. Julitta Yunus
Centre of Studies for Construction, Faculty of Architecture, Planning and Surveying, Universiti Teknologi MARA, Malaysia

Assoc. Prof. Ezgi Tok
Department of Geography, Humboldt University of Berlin, Germany

Prof. Jihad Awad
Department of Architecture, College of Architecture, Art and Design, Ajman University, UAE

Assoc. Prof. Gjergji Islami
Department of Architecture, Faculty of Architecture & Urbanism, Polytechnic University of Tirana, Albania

Prof. Islam Hamdy Elghonaemy

Department of Architecture and Interior Design, College of Engineering, University of Bahrain, Bahrain

Prof. Sherine Mohy Eldine Mohamed Wahba

Department of Architectural Engineering, Faculty of Engineering, Cairo University, Egypt

Prof. Pavlo Maruschak

Ternopil Ivan Pului National Technical University, Ukraine

Dr. Noor Nabilah Sarbini

Faculty of Engineering, University of Technology Malaysia, Malaysia

Assoc. Prof. Hwang Yi

Department of Architecture, School of Engineering, Ajou University, South Korea

Dr. Belgin Terim Cavka

Department of Interior Architecture and Environmental Design, Faculty of Architecture, Yasar University, Turkey

Dr. Eshrar Latif

Welsh School of Architecture, Cardiff University, UK

Prof. Stefano Ricci

Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, Italy

Dr. Dalia Hafiz

College of Architecture and Design, Al-Ghurair University, UAE

Dr. Hanan Al Sheikh

Department of Graphic Design, Faculty of Architecture and Design, Al-Ahliyya Amman University, Jordan

Dr. Maha Moddather Hassan

Department of Architectural Engineering, University of Prince Mugrin, Saudi Arabia

Assoc. Prof. Vanessa Casarin

Department of Graphic Expression, Center of Communication and Expression, Federal University of Santa Catarina, Brazil

Assoc. Prof. Syuhaida Ismail

Faculty of Technology and Informatics, University of Technology Malaysia, Kuala Lumpur Campus, Malaysia

Dr. Halil Ibrahim Burgan

Department of Civil Engineering, Faculty of Engineering, Akdeniz University, Turkey

Assoc. Prof. Rania El Messeidy

Department of Architecture, Faculty of Engineering, October University for Modern Sciences and Arts, Egypt

Dr. Cristina Carpino

Department of Mechanical, Energy and Management Engineering, University of Calabria, Italy

Dr. Luisa Dias Pereira

Department of Mechanical Engineering, University of Coimbra, Portugal

Assoc. Prof. Zuzana Straková Kovářová

Department of Building Services, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia

Assoc. Prof. Yiannis Xenidis

Department of Civil Engineering, Aristotle University of Thessaloniki, Greece

Assoc. Prof. Sattar Hammadi Ali Aljuboori

Department of Graphic Design, Faculty of Architecture and Design, University of the Middle East, Jordan

Dr. Krzysztof Drozdzol

Faculty of Civil Engineering and Architecture, Opole University of Technology, Poland

Dr. Zuraini Binti Md Ali

Department of Building Surveying, Faculty of Built Environment Building, Universiti Malaya, Malaysia

Dr. Ima Defiana

Department of Architecture, Sepuluh Nopember Institute of Technology, Indonesia

Dr. Le Vinh An

Vietnam–Japan Institute of Strategy Cooperation, Duy Tan University, Vietnam

Prof. Alaattin Kanoğlu

Department of Architecture, Faculty of Art, Design and Architecture, Alanya Alaaddin Keykubat University, Turkey

Assoc. Prof. Marcellinus Uwadiiegwu Okafor

Department of Architecture, Imo State University, Nigeria

Prof. Georg Hauger

Department of Spatial Development, Infrastructure and Environmental Planning, Vienna University of Technology, Austria

Assoc. Prof. Derya Gulec Özer

Department of Architecture, Istanbul Technical University, Turkey

Assoc. Prof. Mohd Azwan Bin Abbas

Faculty of Architecture Planning and Surveying, Universiti Teknologi MARA, Malaysia

Dr. Abeer Khudhur Jameel

Department of Highway and Transportation, College of Engineering, Mustansiriyah University, Iraq

Dr. Stefano Galassi

Department of Architecture, University of Florence, Italy

Dr. Ova Candra Dewi

Faculty of Engineering, University of Indonesia, Indonesia

Assoc. Prof. Mennat-Allah Mohsen El-Husseiny

Department of Architecture, Faculty of Engineering, Cairo University, Egypt

Dr. Anna Yunitsyna

Department of Architecture, Faculty of Engineering and Architecture, Tirana Metropolitan University, Tirana, Albania

Dr. Jung Hyun Woo

Department of Landscape Architecture, College of Urban Science, University of Seoul, South Korea

Prof. Crayla Alfaro Aucca

Faculty of Engineering and Architecture, Andean University of Cusco, Spain

Dr. Anoosheh Iravanian

Department of Civil Engineering, Aalto University, Finland

Prof. Heri Sulistiyyono

Department of Civil Engineering, Faculty of Engineering, Mataram University, 83125, Indonesia

Dr. Özge Islamoglu

Department of Interior Architecture, Faculty of Architecture, Karadeniz Technical University, Turkey

Assoc. Prof. Ayasha Siddiqua

Department of Architecture, Ahsanullah University of Science and Technology, Bangladesh

Prof. Jonas Jakaitis

Department of Design, Vilnius Gediminas Technical University, Lithuania

Assoc. Prof. Paulo Santos

Department of Civil Engineering, University of Coimbra, Portugal

Assoc. Prof. Warebi Gabriel Brisibe

Department of Architecture, Faculty of Environmental Sciences, Rivers State University, Nigeria

Assoc. Prof. Joan Lluís Zamora i Mestre

Department of Technology and Architecture, Political University of Catalonia, Spain

Prof. Celia Regina M. Meirelles

Department of Architecture and Urbanism, Faculty of PPGAU-FAU Mackenzie, University Presbiteriana Mackenzie, Brazil

Dr. Nihal Al Sabbagh

Design Lab ENVIRONAS, Cairo, Egypt

Dr. Nur Aziemah Abd Rashid

School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, Malaysia

Dr. Manela Triggianese

Department of Architecture, Faculty of Architecture and the Built Environment, Delft University of Technology, Netherlands

Assoc. Prof. Nariman J. Khalil

Department of Civil & Environmental Engineering, University of Balamand, Lebanon

Dr. Ycel, Mustafa Can

Department of Civil Engineering, Middle East Technical University, Turkey

Assoc. Prof. Hourakhsh Ahmad Nia

Department of Architecture, Alanya HEP University, Turkey

Dr. Pedro George

Town Planning Department, Faculty of Architecture, Lisbon University, Portugal

Dr. Zahiruddin Fitri Abu Hassan

Building Surveying Department, Faculty of Built Environment, Universiti Malaya, Malaysia

Dr. Oginni Olaide Adeyemi

Department of Architecture, University of Lagos, Nigeria

Assoc. Prof. Chin Siew Choo

Department of Civil Engineering, College of Engineering, Universiti Malaysia Pahang, Malaysia

Prof. Monirul Islam

Department of Civil Engineering, International University of Business Agriculture and Technology, Bangladesh

Dr. Luisa Smeragliuolo Perrotta

Department of Civil Engineering, University of Salerno, Italy

Assoc. Prof. Jan Hendrik Hofmeyr Cruywagen

Department of Built Environment and Information Technology, Faculty of Engineering, University of Pretoria, South Africa

Assoc. Prof. Ruben Paul Borg

Department of Building and Civil Engineering, Faculty for the Built Environment,
University of Malta, Malta

Dr. Nor Fazilah Binti Mohd Hashim

Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Malaysia

Prof. Rosana Muñoz

School of Architecture, Federal University of Bahia, Brazil

Prof. Naser Kabashi

Faculty of Civil Engineering and Architecture, University of Pristina (UP), Kosovo

Assoc. Prof. Erdem Yıldırım

Department of Architecture, Dokuz Eylul University, Turkey

Prof. Ali Firat Cabalar

Department of Civil Engineering, University of Gaziantep, Turkey

Dr. Mohamed Abdel Raouf Mohamed

Department of Construction Management & Interior Design, Ball State University, USA

Dr. Suman Manandhar

Department of Civil Engineering, Faculty of Engineering, Kyushu University, Japan

Dr. Touria Bouazza

Association of Researchers in Construction Management (ARCOM), UK

Dr. Yamina Necissa

Institute of Architecture and Urban Planning, Université Saad Dahlab, Algeria

Dr. Saimir Shtylla

Faculty of Applied Sciences and Creative Industries, Barleti University, Albania

Dr. Themistoklis Tsalkatidis

Faculty of Science and Technology (REALTEK), Norwegian University of Life Sciences (NMBU), Norway

Dr. Derya Elmali Sen

Department of Architecture, Faculty of Architecture, Karadeniz Technical University (KTU), Turkey

Dr. Ogunbode Ezekiel

Department of Building, School of Environmental Technology, Federal University of Technology, Nigeria

Dr. Nasrellah Hassan Ahmed

Department of Civil Engineering and Environmental Engineering, College of Engineering and Architecture, University of Nizwa, Oman

Assoc. Prof. Michele D'Amato

Department of European and Mediterranean Cultures: Architecture, Environment, Cultural Heritage (DiCEM), University of Basilicata, Matera, Italy

Assoc. Prof. Akmalar Sagymbekova

Department of Transport Construction and Production of Building Materials, Kazakh Automobile and Road Institute L. B. Goncharov, Kazakhstan

Assoc. Prof. Feride Pınar Arabacıoğlu

Department of Architecture, Faculty of Architecture, Yildiz Technical University, Turkey

Assoc. Prof. Ana Mrdja

Faculty of Architecture, University of Zagreb, Zagreb, Croatia

Assoc. Prof. Yasmeen Elsemary

Department of Architecture, Arab Academy for Science, Technology & Maritime Transport (AASTMT), Egypt

Assoc. Prof. Bashir Saleh

Division of Civil Engineering, School of Engineering and Applied Sciences, College of Construction, Libyan Academy for Postgraduate Studies, Libya

Prof. Farzana Rahman

Department of Civil Engineering, United International University (UIU), Bangladesh

Prof. Karima Amari

Institute of Architecture and Urban Planning, University of Blida, Algeria

Prof. Veljko RadiCevic

School of Railroad Transport of Applied Studies, Academy of Technical and Art Applied Studies Belgrade, Serbia

Prof. Kagan Gunce

Faculty of Architecture, Eastern Mediterranean University, Turkey

Dr. Mohammadreza Sadeghi Moghaddam Chokami

Department of Urban Planning, Islamic Azad University, Iran

Dr. Arturo Crespo Materna

Institute of Railway Engineering, TU Darmstadt, Germany

Dr. Catherine Rwamba Githuku

Department of Civil Engineering, Kenyatta University, Kenya

Dr. Ing. Josef Plášek

Faculty of Civil Engineering, Brno University of Technology, Czech Republic

Dr. Tarek M.Kamel

Department of Architectural Engineering and Environmental Design, Faculty of

Engineering & Technology, Arab Academy for Science, Technology, and Maritime Transport, Sheraton Campus, Egypt

Dr. Odaudu Ugbede Sunday

Department of Architecture, Bingham University, Nigeria

Prof. Kristina Careva

Digital Design Technology Unit, Faculty of Architecture University of Zagreb, Croatia

Prof. Antonella Guida

Department of European and Mediterranean Culture: Architecture, Environment and Cultural Heritage (DICEM), University of Basilicata (UNIBAS), Italy

Dr. Rodolfo Labernarda

Department of Civil Engineering, University of Calabria, Italy

Prof. Florian Nepravishta

Faculty of Architecture and Urbanism, Polytechnic University of Tirana, Albania

Prof. Evelyn L. A. Allu-Kangkum

Department of Architecture, Faculty of Environmental Sciences, University of Jos., Nigeria

Dr. Jonathan Ruiz Jaramillo

Higher Technical School of Architecture, University of Málaga, Spain

Dr. Zerari Sami

Department of Architecture, University of Biskra, Algeria

Dr. Bernhard Sommer

Department of Energy Design, Institute of Architecture, University of Applied Arts, Austria

Assoc. Prof. Lubos Hrustinec

Department of Geotechnics, Faculty of Civil Engineering, Slovak University of Technology in Bratislava (STU), Slovakia

Prof. Mushtaq Ahmed

Department of Civil and Environmental Engineering, Shahjalal University of Science and Technology, Bangladesh

Prof. Amgad Fahmy

Department of Architectural Engineering and Environmental Design, Arab Academy for Science, Technology and Maritime Transport, Cairo Campus, Egypt

Assoc. Prof Tamer ElSerafi

Department of Architecture, Effat University, Saudi Arabia

Prof. Murat Dal

Department of Interior Architecture, Faculty of Fine Arts, Design and Architecture, Munzur University, Turkey

Assoc. Prof. Fahmyddin Tauhid

Faculty of Science and Technology, UIN Alauddin Makassar, Indonesia

Assoc. Prof. Sumardi

Department of Civil Engineering, State Polytechnic of Malang, Indonesia

Dr. Michaela Frantová

Department of Concrete and Masonry Structures, Faculty of Civil Engineering, Czech Technical University in Prague, the Czech Republic

Assoc. Prof. Bojan Marić

Department for Road Transport and Traffic, Faculty of Transport and Traffic Engineering, University of East Sarajevo, Bosnia and Herzegovina

Prof. Rui Oliveira

Instituto Politécnico de Bragança, Portugal

Prof. Nihan Engin

Faculty of Architecture, Karadeniz Technical University, Turkey

Assoc. Prof. Ir. Ayuddin

Faculty of Engineering, Universitas Negeri Makassar (UNM), Indonesia

Dr. Diala Ibrahim Ali Atiyat

Department of Architecture Engineering, Isra University, Jordan

Dr. Haydar Raheem Hmoud Al-saaidy

Department of Civil Engineering, College of Engineering, University of Baghdad, Iraq

Dr. Ringisai Abigail Dhliwayo

Department of Architecture and Spatial Planning, Namibia University of Science and Technology, Namibia

Dr. Saddek Mansouri

Laboratory of Urban Planning and Environment, University of Constantine 1, Algeria

Dr. Madina Djeridane

National Center for Integrated Studies and Research in Buildings, Soidania, Algeria

Dr. Taofiq Raimi

TAZAS Development and Consulting Limited, Abuja, Nigeria

Dr. Jorge Humberto Canastrá Marum

Department of Civil Engineering and Architecture, Faculty of Engineering, University of Beira Interior, Portugal

Assoc. Prof. Vlad Vigil Eftenie

Department of "Synthesis of Architectural Design", University of Architecture and Urbanism "Ion Mincu", Romania

Assoc. Prof. Mustafa Mohammed Elwan

Department of Architecture, Faculty of Engineering, Tanta University, Egypt

Assoc. Prof. Rim Meziani

Department of Architecture, College of Engineering, Abu Dhabi University, Abu Dhabi, UAE

Dr. Randa Medhat Khalil

Department of Architectural Engineering, Faculty of Engineering and Technology, Future University in Egypt (FUE), Egypt

Dr. Gabriel Marchi de Oliveira

Department of Materials Science and Technology (DCTM), the Federal University of Bahia (UFBA), Brazil

Dr. Kelvin Tang Kang Wee

Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia (UTM), Malaysia

Assoc. Prof. Marija Smilović Zulim

Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Croatia

Prof. Mohamed M. Shawky Abou-Liela

Department of Architecture Engineering, Faculty of Engineering, Mansoura University, Egypt

Prof. Sadik C. Artunç

Department of Landscape Architecture, College of Agriculture and Life Sciences, Mississippi State University (MSU), USA

Assoc. Prof. Stefania De Medici

Department of Civil Engineering and Architecture, University of Catania, Italy

Assoc. Prof. Stefan Marschnig

Institute of Railway Engineering and Transport Economy, Graz University of Technology, Austria

Prof. Alexey Krasheninnikov

Moscow Architectural Institute, Moscow, Russia

Dr. Dhiaa Al-Tarafany

Department of Civil Engineering, Al-Nahrain University, Iraq

Assoc. Prof. Alcestis Rodi

Department of Architecture, University of Patras, Greece

Dr. Arch Fiorella Vanini

College of Engineering, Prince Sultan University, Saudi Arabia

Assoc. Prof. Kharizam Binti Ismail

Faculty of Architecture, Planning and Surveying, Universiti Teknologi MARA, Malaysia

Dr. Pedro Delgado

Department of Engineering and Technology Sciences, Escola Superior de Tecnologia e Gestão (ESTG), Polytechnic Institute of Viana do Castelo, Portugal

Symbolic Architecture at Sin Ming Hui Candra Naya Chinese Heritage in West Jakarta, Indonesia

Frysa Wiriantari^{1,*}, Ngakan Ketut Acwin Dwijendra²,
Arya Bagus Mahadwijati Wijaatmaja¹, I Made Agus Mahendra³

¹Architecture Study Program, Faculty of Engineering, Dwijendra University, Indonesia

²Faculty of Engineering, Udayana University, Indonesia

³Faculty of Art and Design, Institut Seni Indonesia Bali, Indonesia

Received June 20, 2025; Revised October 1, 2025; Accepted October 23, 2025

Cite This Paper in the Following Citation Styles

(a): [1] Frysa Wiriantari, Ngakan Ketut Acwin Dwijendra, Arya Bagus Mahadwijati Wijaatmaja, I Made Agus Mahendra , "Symbolic Architecture at Sin Ming Hui Candra Naya Chinese Heritage in West Jakarta, Indonesia," *Civil Engineering and Architecture*, Vol. 13, No. 6, pp. 4462 - 4472, 2025. DOI: 10.13189/cea.2025.130625.

(b): Frysa Wiriantari, Ngakan Ketut Acwin Dwijendra, Arya Bagus Mahadwijati Wijaatmaja, I Made Agus Mahendra (2025). *Symbolic Architecture at Sin Ming Hui Candra Naya Chinese Heritage in West Jakarta, Indonesia*. *Civil Engineering and Architecture*, 13(6), 4462 - 4472. DOI: 10.13189/cea.2025.130625.

Copyright©2025 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract Sin Ming Hui Candra Naya is one of the most significant Chinese heritage buildings in Jakarta, Indonesia, originally built as the residence of the Khouw family, a prominent Chinese-Indonesian lineage during the colonial era. Over time, this heritage structure has undergone substantial changes in form, function, and meaning due to rapid urban development and modernization pressures in Jakarta Chinatown area. This study aims to explore the transformation of Candra Naya's architecture by focusing on the symbolic values embedded within its evolving spatial expressions. The research employs a qualitative-descriptive method using a symbolic architectural approach, combining architectural ethnography, spatial observation, semiotic analysis, and cultural interpretation. Data collection was conducted through direct site observation, in-depth interviews with heritage experts, community leaders, and local historians, as well as a comprehensive literature review of historical archives, architectural records, and urban policies. The findings reveal that the current architecture of Candra Naya reflects a layered identity—merging traditional Chinese architectural elements such as curved roofs and courtyard configurations with Dutch colonial masonry and tropical adaptations. Symbolically, the building embodies cultural continuity, resilience, and syncretism—representing values of harmony (He), prosperity (Fu), and ancestral reverence. The study also highlights the socio-political significance of the building, as it has shifted from a private mansion to a

public cultural icon, reflecting broader changes in urban identity and heritage politics. This research contributes to the growing discourse on heritage architecture in Southeast Asia by offering an interpretive model for understanding the symbolic transformations of hybrid heritage buildings. It emphasizes the need for adaptive reuse and sustainable conservation practices that respect symbolic meanings, while accommodating new functions. The study's limitations lie in restricted access to certain archival materials and limited participation from descendants of the original family. Nevertheless, the insights generated are valuable for urban planners, conservationists, and cultural scholars concerned with maintaining the identity and legacy of historic architecture in rapidly changing urban contexts.

Keywords Candra Naya, Symbolic Architecture, Chinese Heritage, Transformation, Sustainability, Colonial Hybridity

1. Introduction

China is one of the Asian countries with a deeply rooted and distinctive architectural tradition. Symmetry, representing balance, is a common feature in all types of Chinese architecture, from small homes to grand palaces.

This architectural system, shaped by cosmological concepts such as Feng Shui and Taoism, governs spatial organization and building orientation. Elements such as color symbolism, numerical associations, and roof design are central to its implementation. Chinese roofs range from single-pitched to multi-tiered forms, typically featuring curved structures adorned with mythological motifs in ceramic or painted wood, thereby creating a sense of grandeur. Yellow or gold, symbolizing prosperity and luck, is often used for upper building levels.

Sin Ming Hui, also known as Candra Naya, exemplifies this Chinese architectural heritage. Located at Jalan Gajah Mada No. 188, West Jakarta, it is a designated cultural heritage site. Candra Naya was built by the Khouw Tian Sek family in the late 1800s, during the year of the rabbit. The Khouw van Tamboen family originally owned the property before Majoor der Chinezen Khouw Kim An, their son, donated it. The Khouw family, of Chinese Dutch East Indies descent, was among the most influential Chinese Indonesian families. Majoor Khouw Kim was a bureaucrat, community leader, and land trader who became the last Chinese Mayor of Batavia, a position that represented the highest authority of the Chinese community within the colonial political and legal system. Visualization of the Candra Naya building in the 1950s is referred to Figure 1.

Figure 1. Sin Ming Hui Building, Jalan Gajah Mada No. 188 Jakarta in the 1950s. (Source: Kompasiana.com, downloaded December 12, 2023)

The two other Khouw family residences have since been repurposed. The former home of Mayor Tio Tek Ho now serves as a commercial site (Toko Kompak) in Pasar Baru, while another, once owned by Khouw Tjeng Po, functions as SMA Negeri 2 Jakarta, an educational institution.

Sin Ming Hui Candra Naya covers an area of over 2,000 square meters. This building is a protected cultural heritage site, listed in Jakarta Special Capital Region Regulation Number 9 of 1999 concerning the Preservation and Utilization of Cultural Heritage Buildings and Environments. Other regulations confirming this include the Decree of the Acting Governor of Jakarta in 1972, which at the time still referred to regulations from the

Dutch East Indies era, namely the Monumenten Ordonnantie of 1931, the Decree of the Minister of Education and Culture in 1988, and the Decree of the Governor of Jakarta in 1993 [1]. Over the past century, Candra Naya has developed into a center of Chinese Indonesian political and social activity.

In 1992, Candra Naya was sold to a Chinese Indonesian company called Modern Group. In 2012, Candra Naya's main building and wings were rebuilt to prevent demolition instead of moving them to Taman Mini Indonesia Indah. The layout and ornamentation of Sin Ming Hui Candra Naya demonstrate that Chinese architecture has evolved over thousands of years and influenced architecture throughout East Asia. Since the freezing of architectural styles in early imperial China, the structural principles of Chinese architecture have remained unchanged, only the ornamental details have changed. There are four elements in Chinese architecture, namely courtyards, roof characteristics, building structures, and the use of color [2]. These four elements serve as a framework in the study of Symbolic Architecture within the Chinese Heritage of Sin Ming Hui Candra Naya in West Jakarta. This discussion covers the elements of Chinese architecture: typology, roofs, structures, high walls, doors, and ornaments.

This research aims to discover the function and meaning contained in the architectural elements of Sin Ming Hui Candra Naya. This research is essential given Candra Naya's current situation, as it is surrounded by modern high-rise buildings, which presents potential risks to its long-term preservation. Aditya W. Fitrianto, an architect and urban preservationist in Jakarta, notes that Candra Naya [3], now surrounded by modern buildings, has lost its original character. "Just a piece of an old building that has lost its important function, as in the past," Aditya told Kompas.com, Thursday (2/3/2022). Aditya stated that Candra Naya should be preserved and revitalized as a living heritage in the urban area. This is because the building no longer appears significant to the face of the city. By exploring the form, function, and meaning of this, it is hoped that the community and government will make every effort to maintain the existence of this building. Although this building is physically small, the historical and cultural value it contains is part of Jakarta's past and the history of the Indonesian nation.

• Symbols

Symbols are the result of an agreement. According to F.W. Dillistone in his famous work, *The Power of Symbols*, a symbol is a word that represents or expresses something.

Turner distinguishes symbols from signs. Symbols have multiple meanings and broad implications [4]. For example, the yellow color of a traffic light gives drivers morning instructions to be cautious, while the yellow-gold color symbolizes cheerfulness, prosperity, and fertility. It is not surprising that gold is the dominant color in Chinese architecture, alongside black and red. Through symbols,

we express thoughts, concepts, and ideas. The meaning of something depends on the way we present it. Symbolic is an equation of human perception of an object due to similarities in place, time, culture, and others. Symbolic is thought to unify perceptions of a design. This unification of perception occurs because everyone shares the same understanding of something using symbols. All understandings that give rise to an evaluation of a design will be conveyed well.

- **Symbolic Architecture and Theoretical Framework**

Symbolism is the similarity in how people perceive something. This occurs due to commonalities in factors such as location, period, background, culture, education, and others [3][5]. Through symbolism, diverse people's perceptions can be unified into a single assessment. Symbolic architecture employs symbols in design to convey ideas, highlighting both the essence and deeper meaning of a structure through its form, structure, and ornamentation. Symbolic architecture is closely related to the function of architecture, which is to demonstrate the relationship between humans and their environment [6]. Certain symbols are immediately recognizable, whereas others may necessitate further analysis and interpretation to comprehend their meaning. Symbols also indicate identity, origin, or function as a building's identifier/self-identity [7].

Following Christian Norberg-Schulz's [19] phenomenological notion of *genius loci*, symbolic architecture reveals how physical forms embody cultural meanings and human experiences in their place. This helps explain why features such as the courtyard, moon gate, and axial order at Candra Naya are not only functional but also linked to notions of dwelling, identity, and memory.

Similarly, Charles Jencks (1995) emphasized that architecture in postmodern and pluralistic societies embodies diverse and layered meanings. This is particularly relevant to Candra Naya, which blends Chinese vernacular forms with colonial bureaucratic symbolism, creating an architectural language that reflects the identities of both cultures.

From a heritage management perspective, UNESCO's Historic Urban Landscape (HUL) framework (2011) advocates the integration of tangible and intangible values in contemporary urban planning. Viewing Candra Naya through this perspective allows us to evaluate not only its architectural symbolism, but also the social, spiritual, and political meanings embedded within it as part of Jakarta's evolving urban landscape.

- **Chinese architecture**

Chinese architecture is based on balance. This is reflected in the building's emphasis on articulation and the symmetrical system on its sides [8]. The arrangement of space in the building is such that the central courtyard is

the center of the room around it. The wings also show a symmetrical impression on each side of the building to maintain the overall bilateral symmetry [9]. The primary materials used in the establishment are wooden beams that support the overall building structure, as well as clay (usually in the form of bricks). Wooden beams are a structural support for the roof load. The roof is either a single pyramid or multiple pyramids. In certain Chinese mountain areas, roofs are extended or built with matouqiang (horse head walls) to prevent fires from airborne embers.

2. Methods

This research employs a descriptive, qualitative approach with a symbolic architecture framework. This method seeks to determine the meaning of an object optimally by considering symbols from various perspectives or approaches that facilitate interpretation. Interpretation will be related to background, education, cultural differences, and others.

The research method used is qualitative that involves the researcher as the main instrument, uses simultaneous data collection, and relies on inductive data analysis. The results of qualitative research focus on the philosophy of meaning rather than generalization. This method seeks to find meaning in the forms and ornaments found in the Sin Ming Hui Candra Naya Cultural Heritage.

The diversity of views on meaning will, in turn, lead to a wealth of meaning in human life, enriching the quality of aesthetics, ethics, logic, and understanding of the object in question. The research uses these approaches:

1. The approach to form,
2. An approach based on Chinese beliefs
3. A comparative approach referring to similar symbolic features in Chinese heritage architecture across Southeast Asia, particularly in Penang (Malaysia), Singapore, Bangkok (Thailand), and Manila (Philippines), to identify shared symbolic vocabularies and local adaptations.

3. Results and Discussions

The data was obtained using three main methods: (1) direct observation at the location, (2) in-depth interviews with local people, heritage experts, and academics, and (3) a literature review summarized in Table 1.

The Candra Naya building currently leaves only the main building or its core. Through the building style approach, there are six distinctive Chinese building styles, namely Klenteng, Chinese Laseman, Chinese Vernacular, Mosque, Javanese, and colonial [10]. Table 2 summarizes these six architectural styles and their key characteristics.

Table 1. Summary of Observation, Interviews, and Literature Review on Symbolic Meanings of Candra Naya's Architectural Elements

Data Source	Key Findings	Symbolic Meaning / Interpretation
Observation (site visit, spatial layout, ornaments, courtyards, roof, moon gates, etc.)	<ul style="list-style-type: none"> - Four courtyards with koi ponds, lotus, and gazebos. - Roof with dragon ornaments, curved 'swallow-tail' style. - Moon gates (4 units, diameter ± 60 cm). - Doors with symbolic carvings and colors (gold, black, red). 	<ul style="list-style-type: none"> - Courtyard as microcosm (balance between humans & universe). - Roof dragon = protection, prosperity, authority. - Moon gate = unity, family harmony, prosperity. - Door dimensions = status, fortune inflow.
In-depth Interviews (community members, heritage experts, academics)	<ul style="list-style-type: none"> - Candra Naya lost its original character due to high-rise surroundings (Aditya Fitrianto, 2022). - Still considered a living heritage with symbolic and historical value. - Community hopes for revitalization, not just <i>fa çade</i> preservation. 	<ul style="list-style-type: none"> - Symbolism is not only architectural but also cultural identity. - Importance of memory, ritual, and urban heritage values.
Literature Review (previous studies, heritage documents, comparative analysis with Penang, Singapore, Bangkok, Manila)	<ul style="list-style-type: none"> - Chinese architectural principles: symmetry, Feng Shui, Taoist cosmology. - Comparative studies show hybrid symbolism across Southeast Asia. - UNESCO's HUL framework stresses integration of tangible & intangible heritage. 	<ul style="list-style-type: none"> - Candra Naya as hybrid symbol (vernacular + colonial + bureaucratic authority). - Importance of embedding symbolic values into conservation.

Table 2. Six distinctive Chinese building styles, namely Klenteng, Chinese Laseman, Chinese Vernacular, Mosque, Javanese, and colonial

Style	Characteristics	Symbolic Meaning
Klenteng	Multi-tiered roof, red color, dragon/loan ornaments	Religion, devotion, protection, prosperity
Chinese Laseman	Blending of local Javanese and Chinese forms	Adaptation, acculturation
Chinese Laseman	Courtyard, moon gates, domestic orientation	Balance, harmony, family unity
Chinese Vernacular	Courtyard, moon gates, domestic orientation	Balance, harmony, family unity
Mosque (Chinese)	Dome with pagoda fusion, Arabic calligraphy	Syncretism of faith and culture
Javanese	Joglo structure with Chinese ornamentation	Local integration
Kolonial	Dutch structure techniques combined with Chinese symbolic ornament	Power, hybrid authority

Based on the above approach, Candra Naya's architectural typology falls within the "Vernacular Chinese" but is combined with colonial elements, making it unique among heritage sites in Southeast Asia.

Certain structures within the Khouw family compound were removed. Various groups have opposed the demolition. Candra Naya is about 42 by 57 meters and features multiple courtyards. These courtyards serve a function like that of courtyards in traditional Balinese buildings [11] [12]. The courtyards at Candra Naya also serve as a microcosm, reflecting cosmological beliefs about the harmony between humans and the universe. Their functions as a light source, ventilation system, and social gathering area converge in a symbolic center, representing ecological adaptation and cultural significance. The traditional Chinese building floor plan can be seen in Figure 2.

The courtyard is a microspace, or in Chinese beliefs, referred to as microcosmos, which is the energy center for the surrounding [12] [13]. The Chinese believe that the courtyard is a microcosm, a replica of the larger world, referred to as the macrocosm. The courtyard is located at the center or central axis of the building.

In addition to being the energy center of the surrounding

buildings, the courtyard serves as a source of natural lighting and ventilation. The courtyard also serves as a barrier between rooms [14]. Candra Naya itself has four courtyards, the first of which is located inside the main building. The first courtyard features a shade of transparent material, allowing natural light to enter. The initial courtyard is accessible through the main entrance, with a partition inside that has doors positioned to the right and left. The creation of this partition was based on Chinese beliefs, ensuring that the sustenance and prosperity entering through the main front door do not leak or run through the back door, thereby allowing the sustenance to continue growing and remain with the residents of the building.

The second courtyard is located at the back, equipped with a pond and a gazebo as a family resting place. Inside the pond are koi fish and lotus flowers. In Chinese culture, koi fish are associated with good luck, prosperity, sustenance, and happiness. The Chinese people have long favored lotus flowers. Lotus culture originates from Buddhism, and people believe that the lotus symbolizes purity, longevity, humility, and honor [9]. Visualization of the courtyard, pond and gazebo at Candra Naya Building is referred to in Figure 3.

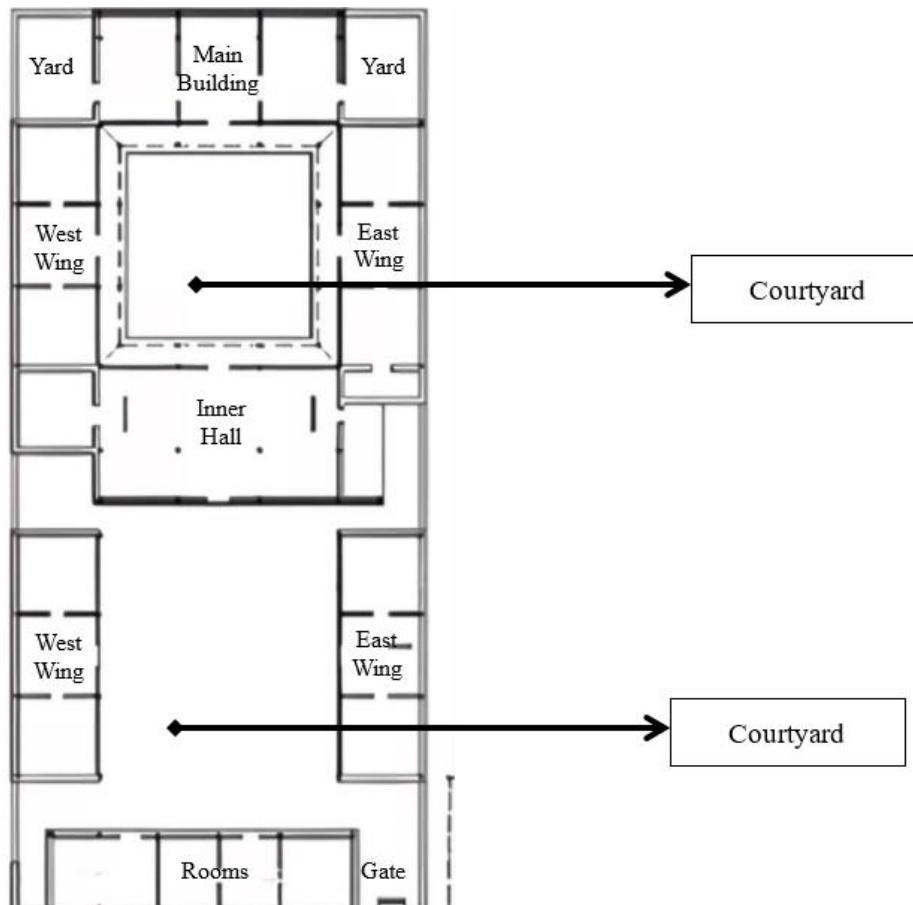
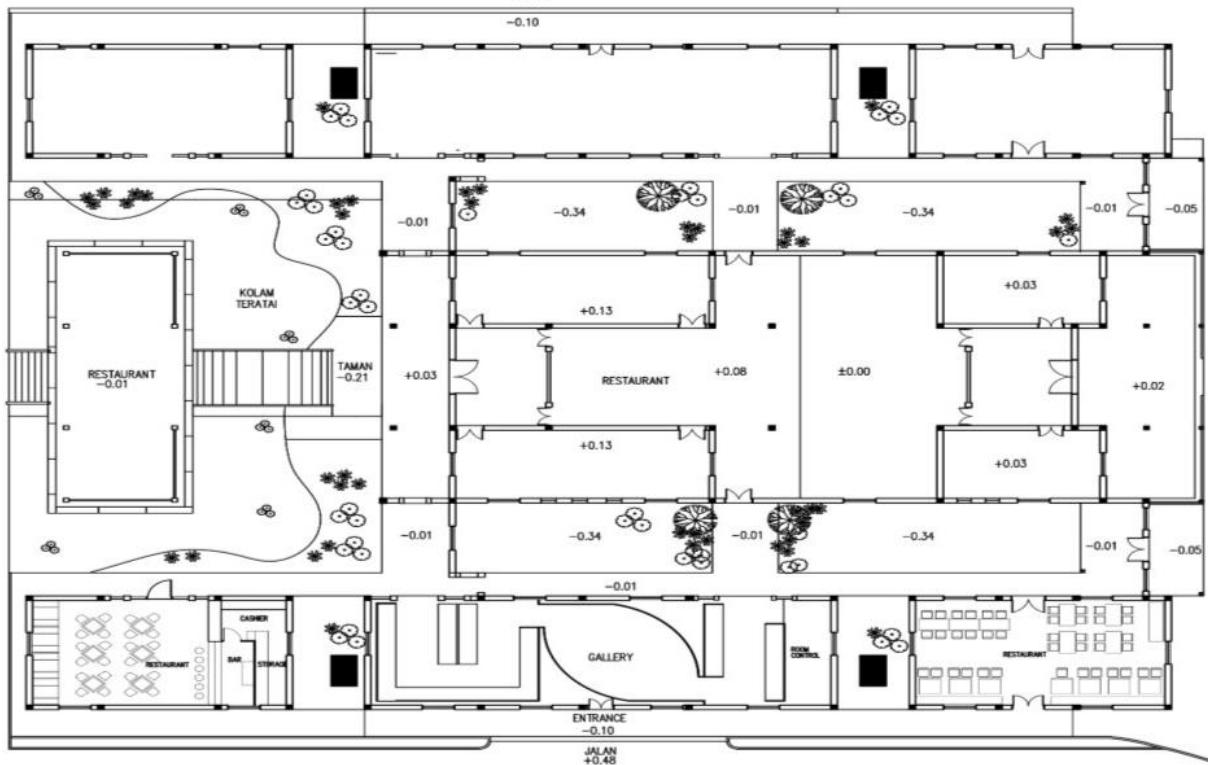


Figure 2. Traditional Chinese Building Floor Plan. (Source: Handinoto, 2008)

Figure 3. Gazebo with koi pond and lotus flowers in the second courtyard. (Source: Author, 2024)


This second courtyard is the most spacious and is directly accessible from two other courtyards on the right and left sides of the building (third and fourth courtyards). The third and fourth courtyards are the separation between

the main building and the side buildings. The building's main entrance is located opposite the second and third courtyards. On one side of the building, there is a room for worship (worship room). Certain rooms located on both the right and left sides of the building are used for their intended functions. The room has a large and wide opening towards the courtyard, allowing the entire side of the building to receive maximum natural lighting and airflow. The existence of the courtyard in the central axis of the building and symmetrical shape has a meaning of balance and harmony, both for the macro nature and for users who occupy the micro nature. Visualization of the Candra Naya floor plan can be seen in Figure 4.

Candra Naya includes spaces designated for a variety of functions, organized as follows:

1. Front Terrace as a transitional public–private space

The front terrace is a space without walls, which consists of four columns to support the weight of the roof and four other columns attached to the wall of the building. At the front of the terrace, there is a separation from the general area in the form of a fence with a height of about 90 cm. The length of the terrace is equal to the width of the building and is a transitional space between the public area and private (residential) facilities.

Figure 4. Candra Naya Floor Plan. (Source: Priyomarsonor, 2022)

2. Living Room and workspaces flanking the main axis.

The first room that can be found after passing through the terrace is the living room. The terrace and the living room are separated by the main door made of solid wood. Since the beginning of Candra Naya until now, the door is still firmly standing, and the supporting frame of the door is also made of wood, which has been preserved until it remains intact in appearance / shape. This room is used as a reception room by Major Khom Kim An's family.

To the right and left of the living room is a room of considerable dimensions. This room is the workspace of the major and the other side of the room functions as a special living room for the close family of the occupants. Both rooms have large windows on the part that borders directly with the courtyard on the side and back.

3. Center Room/Central courtyard with skylight.

In the form of a courtyard located in the center of the main building. The upper part of this room uses translucent transparent material as a skylight that functions as natural lighting for the surrounding rooms. The center room is located between the two rooms on the right and left which are also parallel to the workspace of Major Khow Kim An.

4. Kitchen and domestic quarters along the side wings.

Located in the side building of the main building. The kitchen is located at the front compared to the other rooms

on this side. After the kitchen, there is a room that specifically serves to receive guests' wives and children. In addition to the kitchen and living room, there are also several rooms for concubines and children. The shape of the rooms, including the kitchen, the concubine's living room and other rooms, is similar, while they are facing the courtyard and have large ventilation openings on several sides.

5. Family pavilion and prayer room at the rear

This is a two-story building located outside the main building. The lower floor features a veranda (gazebo) for family gatherings and close guests of the Major's family. In front of the gazebo is a prayer room. The veranda is bordered by bedrooms, including the one belonging to Major Khouw Kim An.

Chinese ornaments often feature forms that are associated with particular meanings. The shape, color and placement of the ornaments are believed to affect the aura of the occupants of the building and its surroundings [15]. The architecture of Candra Naya reflects various interpretations.

1. Roof (The head of the building)

One of the distinctive features of buildings with Chinese architecture is the roof. In general, the roof of the building is single, but some are stacked, as seen in the roof of the Meru building in traditional Balinese architecture.

Roof is in a curved form with dragon ornaments symbolizing protection and power. This curved swallow-tail roof also denotes. The roof of the main building features a curved design, with its lowest point situated at the center of the structure. For the side buildings, the roof features a straight line with a gable system. At the end of the building or the roof ridge, there are Chinese architectural ornaments, namely Chinese mythological ornaments interpreted as protection and repellent [16]. Visualization of the Dragon Carvings on Roof Structures is referred to in Figure 5.

Figure 5. Dragon Carvings on Roof Structures. (Source: Harbyantinna, 2021)

This belief is also reflected in the commercial buildings surrounding the Candra Naya building, as evidenced by the presence of Chinese mythological ornaments in the form of dragons placed at the end of the building's roof. The dragon is a symbol of power. In addition to power, the dragon is also a symbol of goodness and luck. Dragon symbols are often found on poles, a form is frequently encountered. This illustrates that Chinese people are expected not to forget their ancestral culture [17].

The curved roof shape on Chinese buildings started during the Han dynasty. Some Chinese buildings also feature roofs and shapes resembling the tail of a peacock, often associated with higher social status.

The wallet's tail shape on the Candra Naya building was a gift from the Dutch government to officials, such as majors and captains. Curved roofs are also commonly used on religious buildings, such as temples, in Chinese-style buildings in Indonesia.

2. Main entrance.

Like the colonial ruling buildings, Candra Naya's main building also has large doors at the front and back. Large double doors signifying status and openness to fortune, consistent with Feng Shui beliefs. The front and back doors are similar in size and shape. The height of the door reaches ± 3 meters, while the door leaves are ± 1 meter each. Each door has two door leaves so that the opening width of each front and back door is ± 2 meters. The large door at the central part of the building is based on the Chinese belief in Feng Shui, where the main door of a building indicates the status of the owner [18]. The wide and high opening of the door is also believed to bring good luck and prosperity. The visualization proportion of the height of the main door of the Candra Naya's building can be seen in Figure 6.

Figure 6. Main Entrance and Main Door from Front and Back Side View. (Source: Author, 2024)

3. Openings and moon gates

All rooms in the Candra Naya building have relatively large, direct openings. These openings face the courtyard, an open space that ensures the rooms remain bright and dry.

One of the most striking openings, rich in philosophical significance, is the window known as the "moon gate." The moon gate is one of the most distinctive features. This gate is not simply an architectural opening, but a symbolic marker of power and social standing. In traditional Chinese society, its presence usually indicated that the building belonged to a family of high cultural status. Its circular shape evokes the full moon, which is associated with family unity and happiness. Ritual use, such as a wedding procession through the gate, underscores its symbolic role in affirming prosperity and new beginnings (see Figure 7).

Figure 7. Moon Gate. (Source: Uieks, 2022)

The moon gate is located between the central courtyard and the side courtyard of the building. It symbolizes the social status of the building's owner, usually those belonging to the upper middle class [19]. Candra Naya has four moon gates, approximately 160 cm in diameter. The primary function of the moon gate is to serve as a visual connection between the interior and the exterior spaces, linking private and public areas. These gates serve to connect interior and exterior spaces, symbolize unity and familial harmony, and are traditionally incorporated into

ceremonial events such as weddings. The moon gate thus functions both as an architectural device and a cultural signifier of social status.

The circular shape of the moon gate evokes the image of a full moon, representing the unity and happiness of all family members. It also serves as a reminder for family members who are away from home to return.

In traditional Chinese society, the moon gate often functions as a passage to a garden. According to Chinese beliefs, the moon gate is considered a welcoming gateway that bestows good fortune on those who pass through it [20] [21]. This meaning is the foundation of its use in sacred ceremonies, such as weddings, where newlyweds walk through the moon gate together to symbolize good luck and a happy life. The curved shape at the top of the moon gate is interpreted as a crescent moon, symbolizing birth and new beginnings.

4. Sky well (Tien Cjing)

Within the main building, there is a courtyard covered with a transparent roof. This transparent roof allows those inside the building to gaze at the sky above. Traditionally, courtyards are open-air spaces without roofs. To preserve this traditional meaning, transparent and light-permeable materials are used, creating a sense of connection with the sky. This transparent roof is referred to as a "sky well," or Tien Cjing in Chinese (see Figure 8).

Figure 8. Sky in the First Courtyard. (Source: Author, 2024)

According to Chinese beliefs, the sky well is considered a source of blessings and prosperity for the occupants while also serving as a medium for connecting with the divine. The primary functions of the sky well include facilitating air circulation, providing natural daylight, and serving as a gathering space for family members.

From the time of its construction, the courtyard in Candra Naya has been covered, likely an adaptation to Indonesia's tropical climate, which is characterized by consistent heat throughout the year and significant rainfall during the wet season. Despite being enclosed, the courtyard still receives illumination from the sun, moon, and stars, allowing the surrounding spaces to be lit without

diminishing the original concept and meaning of the sky well in the Candra Naya building.

5. Walls and structure

The Candra Naya building exhibits architectural structures and construction techniques characteristic of traditional Chinese architecture. This is evident in all parts of the building, from the roof, symbolizing the "head" of the structure, to the foundation, representing its "feet." The use of distinctly Chinese architectural elements, along with vibrant colors, enhances the presence of Chinese philosophical values throughout the building [1].

In terms of dimensions, the Candra Naya building is quite large, complemented by generously sized windows and doors. The walls typically exceed 4 meters in height and have varying thicknesses ranging from 25 to 30 cm. The thick walls not only serve as structural reinforcements for the roof but also contribute to maintaining a stable indoor thermal condition. During the day, the walls absorb external heat, which is then released at night, creating a balanced indoor temperature.

The walls are constructed using thick bricks and layered with high-quality cement mixtures. To ensure strong load-bearing walls, a red cement mixture is used, incorporating limestone. The adhesive material consists of finely crushed red bricks mixed with lime, and the walls are finished with paint. Columns are typically between 20 and 25 cm in diameter and are constructed using wood, which connects to the roof trusses. This integration creates a unified structure, resembling the cohesiveness seen in traditional Balinese architecture. The joints are strengthened with natural materials such as wooden pegs [22].

The Candra Naya building incorporates various door typologies, as described below:

1. Type 1 (see Figure 9):

- The main entrance consists of double-leaf doors.
- The wooden door frames are about 20 cm thick.
- The enormous size of the doors symbolizes the ease of wealth entering the building.
- The wood is finished in black with gold accents, which are traditionally regarded as symbols of strength intended to repel negative energy.

Figure 9. Type 1 Door. (Source: Raudhoh, 2022)

2. **Type 2** (see Figure 10):

- a. Located at the rear of the main building, the door, including its frame, measures 240 cm x 345 cm.
- b. The carvings on the rear door depict Lingzhi mushroom vegetation, a motif rooted in Chinese mythology.
- c. The Lingzhi mushroom, renowned for its cancer-healing properties, symbolizes longevity and well-being for its occupants.

Figure 10. Type 2 Door. (Source: Raudhoh, 2022)

3. **Type 3** (see Figure 11):

- a. This swing door measures 320 cm in height, featuring lattice openings at the top.
- b. The width of the door, including the lattice, is 135 cm.
- c. Black and gold dominate the door's color scheme.

Figure 11. Type 3 Door. (Source: Raudhoh, 2022)

4. **Type 4** (see Figure 12):

- a. This louvered door has dimensions of 270 cm in height and 140 cm in width.
- b. The front and rear doors are painted black and gold, consistent with traditional Chinese architectural styles.

Figure 12. Type 4 Door. (Source: Raudhoh, 2022)

When compared with other Chinese heritage sites across Southeast Asia, Candra Naya reveals both continuity and divergence. For example, the clan houses of George Town, Penang, and shophouses in Singapore similarly employ courtyards and symbolic ornamentation, yet adapt them to different climatic and political contexts. While Penang's clan houses foreground communal identity, Candra Naya's design emphasizes a fusion of domestic, social, and bureaucratic functions shaped by Dutch colonial urbanism. This comparative lens situates Candra Naya within a regional pattern of symbolic adaptation.

Similar symbolic strategies appear in clan houses in George Town (Malaysia), Singapore shophouses, and Chinese temples in Bangkok and Manila. However, while those examples emphasize communal or religious identity, Candra Naya blends domestic, bureaucratic, and symbolic authority, reflecting its hybrid role in colonial Batavia.

From a heritage management lens, this symbolic layering presents both opportunity and challenge. As UNESCO's HUL principles suggest, safeguarding such places requires integrating physical conservation with interpretation of intangible values—memory, ritual, and identity.

The study shows that the architectural language of Candra Naya is not merely a stylistic choice but a symbolic act of identity reinforcement amidst colonial and contemporary urban transformations. The articulation of courtyards, moon gates, and mythological ornaments indicates the building's role in maintaining cultural continuity. However, this symbolic richness is now obscured by surrounding high-rise commercial developments, reflecting the tension between heritage values and neoliberal urbanization. In this light, the case of Candra Naya resonates with UNESCO's Historic Urban Landscape principles [23], emphasizing the integration of tangible and intangible heritage values in urban development planning.

4. Conclusions

Candra Naya demonstrates how symbolic architecture operates at the intersection of cultural continuity and urban transformation. Courtyards, moon gates, and ornaments serve as more than stylistic features; they embody meanings of harmony, prosperity, and identity in local and regional contexts.

The Sin Ming Hui Candra Naya building exhibits a typology consistent with traditional Chinese architecture. It consists of open spaces (courtyards) located inside the building, at the rear, and on both sides of the main structure. The spatial arrangement follows the principles of balance and symmetry, which are fundamental to Chinese architectural styles.

The central courtyard, situated within the building, differs from the other three in that a transparent roof covers it. This adaptation addresses Indonesia's climatic conditions, characterized by high rainfall. Despite the presence of a roof, the symbolic meaning of the "sky well" remains intact, in line with the feng shui concept applied to this building. This is demonstrated by the occupants' ability to view the sky and experience natural light through the transparent roof.

From the perspective of the building's façade, the Candra Naya building exhibits a colonial vernacular form, characterized by its distinctive roof design and overall architectural composition.

The large openings, including doors and windows, are imbued with symbolic meaning, representing the flow of wealth, prosperity, and well-being for its occupants. Functionally, the large openings also contribute to creating a comfortable indoor thermal environment, preventing dampness, and eliminating the need for artificial ventilation systems.

The thick walls and structural system, which have endured to this day, highlight the distinctive characteristics of Chinese architecture. Additionally, the use of red, black, and gold colors carries symbolic meanings, representing luck and prosperity.

This research contributes new and original knowledge in three ways:

1. By documenting and systematizing the symbolic reading of Candra Naya through triangulated data (observation, interviews, and literature).
2. By providing a comparative perspective from Southeast Asia (Penang, Singapore, Bangkok, Manila) that highlights Candra Naya's hybrid symbolic role between domestic, bureaucratic, and colonial functions.
3. By framing the building within UNESCO's approach, emphasizing that heritage preservation must go beyond facade conservation to reintegrate symbolic meaning into contemporary life.

This research adds originality by positioning Candra Naya not only as a Chinese vernacular building but as a

hybrid symbolic landmark shaped by colonial governance and contemporary urban forces. The novelty lies in connecting local architectural elements with global heritage discourse, providing a framework for urban policy and comparative heritage research in Southeast Asia.

By grounding the analysis in symbolic architecture theory (Norberg-Schulz, Jencks) and contextualizing it through UNESCO's HUL framework and Southeast Asian comparisons, this paper contributes to academic discourse on heritage symbolism and urban identity.

From a policy standpoint, the findings suggest that heritage management in Jakarta should move beyond façade preservation toward holistic interpretation of symbolic values—integrating memory, ritual, and social function into adaptive reuse strategies.

For future research, it is recommended to expand this model to other Chinese heritage buildings in Southeast Asia to explore how architectural symbolism adapts in different urban and political contexts. Cross-disciplinary approaches involving anthropology, urban design, and heritage policy would further enrich this field.

Acknowledgements

The authors would like to express sincere gratitude to all parties who supported this research, especially to the heritage preservation stakeholders and local community members who provided valuable insights during fieldwork. This research was conducted independently without external funding.

REFERENCES

- [1] M. F. Juliansyah, N. Hanifah, S. D. Interior, and F. I. Kreatif, "Makna elemen arsitektur pada bangunan Candra Naya [The meaning of architectural elements in the Candra Naya building]," *Vastukara*, vol. 3, pp. 212–222, 2023.
- [2] A. Rapoport, *House form and culture*. Prentice-Hall, 1969.
- [3] C. Jencks, *The architecture of the jumping universe: a polemic: how complexity science is changing architecture and culture*. Academy Editions, 1997.
- [4] Ashadi, *Kajian makna Dalam Arsitektur Dan paham paham Yang Mempengaruhinya [Study of Meaning in Architecture and the Ideologies That Influence It]*, 1st ed., no. December. Jakarta Pusat: Arsitektur UMJ Press, 2018.
- [5] A. Harisah and Z. Masiming, "Persepsi manusia terhadap tanda, simbol dan spasial [Human Perception of Signs, Symbols, and Spatial Elements]," *SMARTek*, vol. 6, no. 1 Februari, pp. 29–43, 2008.
- [6] J. O. Waani, "Teori Makna Lingkungan Dan Arsitektur [Theory of Environmental and Architectural Meaning]," *Media Matrasain*, vol. 9, no. 1, pp. 36–47, 2012.
- [7] R. S. Raudhoh, F. Fadhila, and A. Andrianawati, "Pengaruh

Arsitektur Cina Pada Bentuk Pintu dan Jendela Bangunan Candra Naya [The Influence of Chinese Architecture on the Form of Doors and Windows in the Candra Naya Building],” *Lintas Ruang* vol. 10, no. 1, pp. 25–31, 2022.

[8] M. A. Imami, “Perencanaan Dan Perancangan Pusat Kebudayaan Tionghoa Di Kota Palembang [Planning and Design of a Chinese Cultural Center in Palembang City],” Universitas Sriwijaya, 2022.

[9] N. Widayati, “Telaah Arsitektur Berlanggam China [Study of Chinese-Style Architecture],” *Dimens. Tek. Arsit.*, vol. 32, no. 1, pp. 42–56, 2004.

[10] T. Adi Kuasa and G. Sri Wuryanto, “Gaya Rumah Tradisional Tionghoa Laseman Sebagai Warisan Sejarah Arsitektur Di Desa Karangturi, Lasem [The Style of Traditional Chinese Lasem Houses as an Architectural Heritage in Karangturi Village, Lasem],” in *Prosiding Seminar Nasional Energi Efficient For Sustainable Living*, 2017, pp. 145–156.

[11] R. Waterson, *The Living House: An Anthropology of Architecture in South-East Asia*. Singapore / Oxford / New York: Oxford University Press, 1990. xix + 263 pages. 200 illustrations (b / w photos and drawings), 24 color plates, 2 maps, bibliography, index. H. Oxford University Press, 1990.

[12] D. M. S. Widiyani and A. B. M. Wijaatmaja, “Spatial system and architecture of traditional settlements in Pinggan village,” in *Exploring the Village of Pinggan: Several Viewpoints of Indigenous Settlement in Kintamani*, T. A. Prajnaawrdhi and M. W. Satria, Eds. Denpasar: Satria Aksara, 2019, pp. 37–46.

[13] F. Wiriantari, S. A. Paturusi, and N. A. Dwijendra, “The Value of Catuspatha as a Public Space for the Balinese Community in the Klungkung City, Bali Indonesia: the Struggle for Activities between Politics, Economics and Socio-Culture,” *Int. Journals Adv. Sci. Technol.*, vol. 29, no. 12, pp. 23–24, 2020.

[14] Y.-F. Tuan, *Space and Place: The Perspective of Experience*. University of Minnesota Press, 1977.

[15] D. Ardiarini and K. Ananda, “Pengaruh konsep arsitektur china terhadap bangunan vihara dewi welas asih [The Influence of Chinese Architectural Concepts on the Dewi Welas Asih Temple Building],” in *Seminar Karya Dan Pameran Mahasiswa Arsitektur Indonesia Multikulturalisme Arsitektur Di Indonesia*, 2022, pp. 363–370.

[16] F. Prihantoro, “Tinjauan Terhadap Karakteristik Arsitektur Kelenteng Tua Pek Kong Bio (Kompleks Vihara Budhi Bhakti) Kota Batam Hot Marangkup Tumpal [A Review of the Architectural Characteristics of the Old Pek Kong Bio Temple (Budhi Bhakti Temple Complex) in Batam City],” *Thesis, Department of Archaeology, Universitas Gadjah Mada*, 2022.

[17] H. P. Yoswara, I. Santosa, and N. Haswanto, “Simbol dan Makna Bentuk Naga (Studi Kasus: Vihara Satya Budhi Bandung),” *Wimba, J. Komun. Vis. dan Multimed.*, vol. 3, no. 2, pp. 17–30, 2011.

[18] W. I. Evianto, “Review On Sustainable City In Indonesia (Case Study Of Yogyakarta City),” *Media Tek. Sipil*, vol. 16, no. 1, pp. 60–65, 2018.

[19] C. Norberg-Schulz, *Genius loci: towards a phenomenology of architecture*. Academy Editions, 1980.

[20] R. Wijayanti *et al.*, “Hierarki gerbang pada bangunan Cina di Lasem [The hierarchy of gates in Chinese buildings in Lasem],” *Prosiding (SIAR) Seminar Ilmiah Arsitektur* [Proceedings of the Scientific Seminar on Architecture (SIAR)], , pp. 103–109, 2020.

[21] L. J. Vale, *Architecture, power, and national identity: Second edition*, 2nd ed. London: Taylor and Francis, 2014.

[22] P. Siregar, “Etnis Dan Seni Arsitektur Cina di Jakarta [Ethnicity and Chinese Architectural Art in Jakarta],” Universitas Negeri Jakarta, 2022.

[23] UNESCO, “Recommendation on the Historic Urban Landscape. Paris: United Nations Educational, Scientific and Cultural Organization,” Paris, France, 2011.